Skip to content. | Skip to navigation

You are here: Home » Chemistry » Faculty » Tomasz » Maria Tomasz, Ph.D.
Document Actions

Maria Tomasz, Ph.D.

Distinguished Professor of Chemistry (Emeritus) - Bioorganic & Medicinal Chemistry

Contact Information:

office 617BW, tel 212-772-5387, fax 212-650-3501, email mtomasz@hunter.cuny.edu

Education: B.S. Eotvos Lorand University, Hungary, M.A. Columbia University, Ph.D. Columbia University

Note: As of July 2008, Prof. Tomasz's research laboratory has closed. No students can be accommodated for research.

Research Summary: 

Our main research interest concerns the mode of action of drugs which bind to DNA covalently as their target. Efforts are focused on the clinicallly important anticancer agents, the mitomycins. These drugs attach themselves covalently to guanine in DNA. A unique feature is their ability to cross-link DNA between the complementary strands. DNA cross-links represent one of the most lethal types of DNA damage. One of our main goals is to elucidate the covalent chemistry of drug-DNA interactions, to detect specific DNA sequences targeted by the drugs and characterize the consequent three-dimensional alterations of DNA structure. This information is used to elucidate the molecular basis of the observed biological effects of the mitomycins, e.g. DNA repair, inhibition of DNA replication and selective cytotoxicity to tumor cells. Another related area of our investigation is the bioactivation of mitomycins by flavoreductase enzymes. Such processes are fundamentally related to the action of numerous important antitumor drugs. Our analysis of the mode of action of known anticancer drugs leads to rational, mechanism-based design and synthesis of new drugs.

List of Publications

1. Fishman, J., Tomasz, M., and Lehman, R. (1960) Catechol Derivatives of Estrogens, Journal of Organic Chemistry 25, 585-588.
2. Fishman, J., and Tomasz, M. (1962) Delta1(10)-19-Norsteroids, Journal of Organic Chemistry 27, 365.
3. Stork, G., and Tomasz, M. (1962) Stereospecific Total Synthesis of Griseofulvin, Journal of the American Chemical Society 84, 311-&.
4. Stork, G., and Tomasz, M. (1964) New Synthesis of Cyclohexanones - Doulbe Michael Addition of Vinyl Ethynyl Ketones to Active Methylene Compounds . Application to Total Synthesis of Dl-Griseofulvin, Journal of the American Chemical Society 86, 471-&.
5. Pelletier, S. W., Adityachaudhury, N., Tomasz, M., Reynolds, J. J., and Mechoulam, R. (1964) Senegenic Acid, a Pentacyclic nor-Triterpene Acid, Tetrahedron Letters, 3065-3070.
6. Tomasz, M., and Chambers, R. W. (1964) Photolysis of Pseudouridine 3]-Phosphate + Srna, Journal of the American Chemical Society 86, 4216-&.
7. Pelletier, S. W., Adityachaudhury, N., Tomaz, M., Reynolds, J. J., and Mechoulam, R. (1965) The structure of senegenic acid, a nortriterpene artifact from Polygala senega, J Org Chem 30, 4234-4247.
8. Tomasz, M., Sanno, Y., and Chambers, R. W. (1965) Chemistry of Pseudouridine .V. Periodate Oxidation of Pseudouridylic Acid and Soluble Ribonucleic Acid, Biochemistry 4, 1710-&.
9. Tomasz, M., and Chambers, R. W. (1965) Chemistry of Pseudouridine .6. Synthesis of Pseudouridine-3',5'-Diphosphate, Biochemistry 4, 1720-&.
10. Tomasz, M., and Chambers, R. W. (1965) Periodate oxidation of pseudouridine, Biochim Biophys Acta 108, 510-512.
11. Tomasz, M., and Chambers, R. W. (1966) Chemistry of Pseudouridine .7. Selective Cleavage of Polynucleotides Containing Pseudouridylic Acid Residues by a Unique Photochemical Reaction, Biochemistry 5, 773-&.
12. Tomasz, M. (1970) Extreme lability of the C-8 proton: a consequence of 7-methylation of guanine residues in model compounds and in DNA and its analytical application, Biochim Biophys Acta 199, 18-28.
13. Tomasz, M. (1970) Novel assay of 7-alkylation of guanine residues in DNA. Application to nitrogen mustard, triethylenemelamine and mitomycin C, Biochim Biophys Acta 213, 288-295.
14. Mercado, C. M., and Tomasz, M. (1972) Inhibitory effects of mitomycin-related compounds lacking the C1-C2 aziridine ring, Antimicrob Agents Chemother 1, 73-77.
15. Tomasz, M., Olson, J., and Mercado, C. M. (1972) Mechanism of the isotopic exchange of the C-8 hydrogen of purines in nucleosides and in deoxyribonucleic acid, Biochemistry 11, 1235-1241.
16. Tomasz, M., Mercado, C. M., Olson, J., and Chatterjie, N. (1974) The mode of interaction of mitomycin C with deoxyribonucleic acid and other polynucleotides in vitro, Biochemistry 13, 4878-4887.
17. Tomasz, M. (1976) H2O2 generation during the redox cycle of mitomycin C and dna-bound mitomycin C, Chem Biol Interact 13, 89-97.
18. Mercado, C. M., and Tomasz, M. (1977) Circular dichroism of mitomycin-DNA complexes. Evidence for a conformational change in DNA, Biochemistry 16, 2040-2046.
19. LaRusso, N. F., Tomasz, M., Muller, M., and Lipman, R. (1977) Interaction of metronidazole with nucleic acids in vitro, Mol Pharmacol 13, 872-882.
20. LaRusso, N. F., Tomasz, M., Kaplan, D., and Muller, M. (1978) Absence of strand breaks in deoxyribonucleic acid treated with metronidazole, Antimicrob Agents Chemother 13, 19-24.
21. Lipman, R., Weaver, J., and Tomasz, M. (1978) Electrostatic complexes of mitomycin C with nucleic acids and polyanions, Biochim Biophys Acta 521, 779-791.
22. Tomasz, M., and Lipman, R. (1979) Alkylation Reactions of Mitomycin-C at Acid Ph, Journal of the American Chemical Society 101, 6063-6067.
23. Tomasz, M., and Lipman, R. (1981) Reductive metabolism and alkylating activity of mitomycin C induced by rat liver microsomes, Biochemistry 20, 5056-5061.
24. Kaplan, D. J., and Tomasz, M. (1982) Altered physiochemical properties of the deoxyribonucleic acid-mitomycin C complex. Evidence for the conformational change in deoxyribonucleic acid, Biochemistry 21, 3006-3013.
25. Weaver, J., and Tomasz, M. (1982) Reactivity of mitomycin C with synthetic polyribonucleotides containing guanine or guanine analogs, Biochim Biophys Acta 697, 252-254.
26. Tomasz, M., Lipman, R., Snyder, J. K., and Nakanishi, K. (1983) Full Structure of a Mitomycin-C Dinucleoside Phosphate Adduct - Use of Differential Ft-Ir Spectroscopy in Microscale Structural Studies, Journal of the American Chemical Society 105, 2059-2063.
27. Tomasz, M., Barton, J. K., Magliozzo, C. C., Tucker, D., Lafer, E. M., and Stollar, B. D. (1983) Lack of Z-DNA conformation in mitomycin-modified polynucleotides having inverted circular dichroism, Proc Natl Acad Sci U S A 80, 2874-2878.
28. Tomasz, M., Jung, M., Verdine, G., and Nakanishi, K. (1984) Circular-Dichroism Spectroscopy as a Probe for the Stereochemistry of Aziridine Cleavage Reactions of Mitomycin-C - Application to Adducts of Mitomycin with DNA Constituents, Journal of the American Chemical Society 106, 7367-7370.
29. Tomasz, M., Lipman, R., Verdine, G. L., and Nakanishi, K. (1985) Nature of the Destruction of Deoxyguanosine Residues by Mitomycin-C Activated by Mild Acid Ph, Journal of the American Chemical Society 107, 6120-6121.
30. Tomasz, M., Lipman, R., Verdine, G. L., and Nakanishi, K. (1986) Reassignment of the guanine-binding mode of reduced mitomycin C, Biochemistry 25, 4337-4344.
31. Tomasz, M., Chowdary, D., Lipman, R., Shimotakahara, S., Veiro, D., Walker, V., and Verdine, G. L. (1986) Reaction of DNA with chemically or enzymatically activated mitomycin C: isolation and structure of the major covalent adduct, Proc Natl Acad Sci U S A 83, 6702-6706.
32. Sutherland, J. C., Lin, B. H., Mugavero, J., Trunk, J., Tomasz, M., Santella, R., Marky, L., and Breslauer, K. J. (1986) Vacuum ultraviolet circular dichroism of double stranded nucleic acids, Photochem Photobiol 44, 295-301.
33. Verdine, G. L., Mcguinness, B. F., Nakanishi, K., and Tomasz, M. (1987) Unusual Cis Stereoselectivity in an Aziridine Cleavage Reaction of Mitomycin-C, Heterocycles 25, 577-587.
34. Tomasz, M., Lipman, R., Chowdary, D., Pawlak, J., Verdine, G. L., and Nakanishi, K. (1987) Isolation and structure of a covalent cross-link adduct between mitomycin C and DNA, Science 235, 1204-1208.
35. Nakanishi, K., Verdine, G. L., and Tomasz, M. (1987) The Reaction of Mitomycin C with DNA, Clarendon Press, Oxford.
36. Chawla, A. K., Lipman, R., and Tomasz, M. (1987) Covalent crosslinks and monofunctional adducts of Mitomycin C in the minor groove of DNA: Effects on DNA conformation and dynamics., in Structure and Expression: Vol.2 DNA and Its Drug Complexities (Sharma, R. H., and Sharma, M. H., Eds.), pp 305-316, Adenine Press, Guilderland, NY.
37. Tomasz, M., Lipman, R., Lee, M. S., Verdine, G. L., and Nakanishi, K. (1987) Reaction of acid-activated mitomycin C with calf thymus DNA and model guanines: elucidation of the base-catalyzed degradation of N7-alkylguanine nucleosides, Biochemistry 26, 2010-2027.
38. Tomasz, M., Chawla, A. K., and Lipman, R. (1988) Mechanism of monofunctional and bifunctional alkylation of DNA by mitomycin C, Biochemistry 27, 3182-3187.
39. Tomasz, M., Lipman, R., Mcguinness, B. F., and Nakanishi, K. (1988) Isolation and Characterization of a Major Adduct between Mitomycin-C and DNA, Journal of the American Chemical Society 110, 5892-5896.
40. Mcguinness, B. F., Nakanishi, K., Lipman, R., and Tomasz, M. (1988) Synthesis of Guanine Derivatives Substituted in the O-6-Position by Mitomycin-C, Tetrahedron Letters 29, 4673-4676.
41. Chawla, A. K., and Tomasz, M. (1988) Interaction of the Antitumor Antibiotic Mitomycin-C with Z-DNA, Journal of Biomolecular Structure & Dynamics 6, 459-470.
42. Franck, R. W., and Tomasz, M. (1989) The Chemistry of Mitomycins, in Chemistry of Antitumor Agents (Wilman, D. E. V., Ed.), pp 379-394, Chapman and Hall, New York.
43. Borowy-Borowski, H., Lipman, R., Chowdary, D., and Tomasz, M. (1990) Duplex oligodeoxyribonucleotides cross-linked by mitomycin C at a single site: synthesis, properties, and cross-link reversibility, Biochemistry 29, 2992-2999.
44. Borowy-Borowski, H., Lipman, R., and Tomasz, M. (1990) Recognition between mitomycin C and specific DNA sequences for cross-link formation, Biochemistry 29, 2999-3006.
45. Norman, D., Live, D., Sastry, M., Lipman, R., Hingerty, B. E., Tomasz, M., Broyde, S., and Patel, D. J. (1990) NMR and computational characterization of mitomycin cross-linked to adjacent deoxyguanosines in the minor groove of the d(T-A-C-G-T-A).d(T-A-C-G-T-A) duplex, Biochemistry 29, 2861-2875.
46. Tomasz, M., Borowy-Borowski, H., and McGuinness, B. F. (1990) Course of recognition and covalent reactions between mitomycin C and DNA: Sequence selectivity of a cross-linking drug, in Molecular Basis for Specificity in Nucleic Acid Drug Interactions (Pullman, B., and Jortner, J., Eds.), pp 551-564, Kluwer Academic Publishers, Dordrecht, The Netherlands.
47. Tomasz, M., Hughes, C. S., Chowdary, D., Keyes, S. R., Lipman, R., Sartorelli, A. C., and Rockwell, S. (1991) Isolation, identification, and assay of [3H]-porfiromycin adducts of EMT6 mouse mammary tumor cell DNA: effects of hypoxia and dicumarol on adduct patterns, Cancer Commun 3, 213-223.
48. McGuinness, B. F., Lipman, R., Goldstein, J., Nakanishi, K., and Tomasz, M. (1991) Reductive alkylation of DNA by mitomycin A, a mitomycin with high redox potential, Biochemistry 30, 6444-6453.
49. McGuinness, B. F., Lipman, R., Nakanishi, K., and Tomasz, M. (1991) Reaction of Sodium Dithionite Activated Mitomycin-C with Guanine at Non-Cross-Linkable Sequences of Oligonucleotides, Journal of Organic Chemistry 56, 4826-4829.
50. Kumar, S., Lipman, R., and Tomasz, M. (1992) Recognition of specific DNA sequences by mitomycin C for alkylation, Biochemistry 31, 1399-1407.
51. Tomasz, M. (1992) Mitomycin C: DNA sequence specificity of a natural DNA cross-linking agent, in Advances in DNA Specific Agents (Hurley, L. H., Ed.), pp 247-261, JAI Press, Greenwish, CT.
52. Bizanek, R., McGuinness, B. F., Nakanishi, K., and Tomasz, M. (1992) Isolation and structure of an intrastrand cross-link adduct of mitomycin C and DNA, Biochemistry 31, 3084-3091.
53. Kumar, S., Johnson, W. S., and Tomasz, M. (1993) Orientation isomers of the mitomycin C interstrand cross-link in non-self-complementary DNA. Differential effect of the two isomers on restriction endonuclease cleavage at a nearby site, Biochemistry 32, 1364-1372.
54. Basu, A. K., Hanrahan, C. J., Malia, S. A., Kumar, S., Bizanek, R., and Tomasz, M. (1993) Effect of site-specifically located mitomycin C-DNA monoadducts on in vitro DNA synthesis by DNA polymerases, Biochemistry 32, 4708-4718.
55. Sartorelli, A. C., Tomasz, M., and Rockwell, S. (1993) Studies on the mechanism of the cytotoxic action of the mitomycin antibiotics in hypoxic and oxygenated EMT6 cells, Adv Enzyme Regul 33, 3-17.
56. Rockwell, S., Sartorelli, A. C., Tomasz, M., and Kennedy, K. A. (1993) Cellular pharmacology of quinone bioreductive alkylating agents, Cancer Metastasis Rev 12, 165-176.
57. Bizanek, R., Chowdary, D., Arai, H., Kasai, M., Hughes, C. S., Sartorelli, A. C., Rockwell, S., and Tomasz, M. (1993) Adducts of mitomycin C and DNA in EMT6 mouse mammary tumor cells: effects of hypoxia and dicumarol on adduct patterns, Cancer Res 53, 5127-5134.
58. Tomasz, M. (1994) The mitomycins: natural cross-linkers of DNA, in Molecular aspects of anticancer drug-DNA interactions (Waring, M. J., and Neidle, S., Eds.), pp 312-349, McMillan press, London.
59. Sharma, M., and Tomasz, M. (1994) Conjugation of glutathione and other thiols with bioreductively activated mitomycin C. Effect of thiols on the reductive activation rate, Chem Res Toxicol 7, 390-400.
60. Sharma, M., He, Q. Y., and Tomasz, M. (1994) Effects of glutathione on alkylation and cross-linking of DNA by mitomycin C. Isolation of a ternary glutathione-mitomycin-DNA adduct, Chem Res Toxicol 7, 401-407.
61. Tomasz, M. (1994) DNA adducts of the mitomycins, IARC Sci Publ, 349-357.
62. He, Q. Y., Maruenda, H., and Tomasz, M. (1994) Novel Bioreductive Activation Mechanism of Mitomycin-C Derivatives Bearing a Disulfide Substituent in Their Quinone, Journal of the American Chemical Society 116, 9349-9350.
63. Sartorelli, A. C., Hodnick, W. F., Belcourt, M. F., Tomasz, M., Haffty, B., Fischer, J. J., and Rockwell, S. (1994) Mitomycin C: a prototype bioreductive agent, Oncol Res 6, 501-508.
64. Kumar, G. S., He, Q. Y., Behr-Ventura, D., and Tomasz, M. (1995) Binding of 2,7-diaminomitosene to DNA: model for the precovalent recognition of DNA by activated mitomycin C, Biochemistry 34, 2662-2671.
65. Sastry, M., Fiala, R., Lipman, R., Tomasz, M., and Patel, D. J. (1995) Solution structure of the monoalkylated mitomycin C-DNA complex, J Mol Biol 247, 338-359.
66. Johnson, W. S., He, Q. Y., and Tomasz, M. (1995) Selective recognition of the m5CpG dinucleotide sequence in DNA by mitomycin C for alkylation and cross-linking, Bioorg Med Chem 3, 851-860.
67. Tomasz, M. (1995) Mitomycin C: small, fast and deadly (but very selective), Chem Biol 2, 575-579.
68. Gargiulo, D., Musser, S. S., Yang, L. H., Fukuyama, T., and Tomasz, M. (1995) Alkylation and Cross-Linking of DNA by the Unnatural Enantiomer of Mitomycin-C - Mechanism of the DNA-Sequence Specificity of Mitomycins, Journal of the American Chemical Society 117, 9388-9398.
69. Rink, S. M., Lipman, R., Alley, S. C., Hopkins, P. B., and Tomasz, M. (1996) Bending of DNA by the mitomycin C-induced, GpG intrastrand cross-link, Chem Res Toxicol 9, 382-389.
70. Kumar, G. S., Musser, S. M., Cummings, J., and Tomasz, M. (1996) 2,7-diaminomitosene, a monofunctional mitomycin C derivative, alkylates DNA in the major groove. Structure and base-sequence specificity of the DNA adduct and mechanism of the alkylation, Journal of the American Chemical Society 118, 9209-9217.
71. Maruenda, H., and Tomasz, M. (1996) Antisense sequence-directed cross-linking of DNA oligonucleotides by mitomycin C, Bioconjug Chem 7, 541-544.
72. Maruenda, H., and Tomasz, M. (1997) Antisense sequence-directed cross-linking of RNA oligonucleotides by mitomycin, Anticancer Drug Des 12, 473-479.
73. Maliepaard, M., de Mol, N. J., Tomasz, M., Gargiulo, D., Janssen, L. H., van Duynhoven, J. P., van Velzen, E. J., Verboom, W., and Reinhoudt, D. N. (1997) Mitosene-DNA adducts. Characterization of two major DNA monoadducts formed by 1,10-bis(acetoxy)-7-methoxymitosene upon reductive activation, Biochemistry 36, 9211-9220.
74. Suresh Kumar, G., Lipman, R., Cummings, J., and Tomasz, M. (1997) Mitomycin C-DNA adducts generated by DT-diaphorase. Revised mechanism of the enzymatic reductive activation of mitomycin C, Biochemistry 36, 14128-14136.
75. Tomasz, M., and Palom, Y. (1997) The mitomycin bioreductive antitumor agents: cross-linking and alkylation of DNA as the molecular basis of their activity, Pharmacol Ther 76, 73-87.
76. Ramos, L. A., Lipman, R., Tomasz, M., and Basu, A. K. (1998) The major mitomycin C-DNA monoadduct is cytotoxic but not mutagenic in Escherichia coli, Chem Res Toxicol 11, 64-69.
77. Palom, Y., Lipman, R., Musser, S. M., and Tomasz, M. (1998) A mitomycin-N6-deoxyadenosine adduct isolated from DNA, Chem Res Toxicol 11, 203-210.
78. Allan, J. M., Engelward, B. P., Dreslin, A. J., Wyatt, M. D., Tomasz, M., and Samson, L. D. (1998) Mammalian 3-methyladenine DNA glycosylase protects against the toxicity and clastogenicity of certain chemotherapeutic DNA cross-linking agents, Cancer Res 58, 3965-3973.
79. Cummings, J., Spanswick, V. J., Tomasz, M., and Smyth, J. F. (1998) Enzymology of mitomycin C metabolic activation in tumour tissue: implications for enzyme-directed bioreductive drug development, Biochem Pharmacol 56, 405-414.
80. Tomasz, M., Das, A., Tang, K. S., Ford, M. G. J., Minnock, A., Musser, S. M., and Waring, M. J. (1998) The purine 2-amino group as the critical recognition element for sequence-specific alkylation and cross-linking of DNA by mitomycin C, Journal of the American Chemical Society 120, 11581-11593.
81. Palom, Y., Belcourt, M. F., Kumar, G. S., Arai, H., Kasai, M., Sartorelli, A. C., Rockwell, S., and Tomasz, M. (1998) Formation of a major DNA adduct of the mitomycin metabolite 2,7-diaminomitosene in EMT6 mouse mammary tumor cells treated with mitomycin C, Oncol Res 10, 509-521.
82. Das, A., Tang, K. S., Gopalakrishnan, S., Waring, M. J., and Tomasz, M. (1999) Reactivity of guanine at m5CpG steps in DNA: evidence for electronic effects transmitted through the base pairs, Chem Biol 6, 461-471.
83. Gniazdowski, M., and Tomasz, M. (1999) DNA-interacting drugs used in lung cancer chemotherapy: Molecular aspects of their action, Current Pneumology 3, 1-17.
84. Paz, M. M., Das, A., and Tomasz, M. (1999) Mitomycin C linked to DNA minor groove binding agents: synthesis, reductive activation, DNA binding and cross-linking properties and in vitro antitumor activity, Bioorg Med Chem 7, 2713-2726.
85. Dannenberg, J. J., and Tomasz, M. (2000) Hydrogen-bond acid/base catalysis: A density functional theory study of protonated guanine-(substituted) cytosine base pairs as models for nucleophilic attack on mitomycin in DNA, Journal of the American Chemical Society 122, 2062-2068.
86. Palom, Y., Belcourt, M. F., Musser, S. M., Sartorelli, A. C., Rockwell, S., and Tomasz, M. (2000) Structure of adduct X, the last unknown of the six major DNA adducts of mitomycin C formed in EMT6 mouse mammary tumor cells, Chem Res Toxicol 13, 479-488.
87. Palom, Y., Belcourt, M. F., Tang, L. Q., Mehta, S. S., Sartorelli, A. C., Pritsos, C. A., Pritsos, K. L., Rockwell, S., and Tomasz, M. (2001) Bioreductive metabolism of mitomycin C in EMT6 mouse mammary tumor cells: cytotoxic and non-cytotoxic pathways, leading to different types of DNA adducts. The effect of dicumarol, Biochem Pharmacol 61, 1517-1529.
88. Subramaniam, G., Paz, M. M., Suresh Kumar, G., Das, A., Palom, Y., Clement, C. C., Patel, D. J., and Tomasz, M. (2001) Solution structure of a guanine-N7-linked complex of the mitomycin C metabolite 2,7-diaminomitosene and DNA. Basis of sequence selectivity, Biochemistry 40, 10473-10484.
89. Paz, M. M., and Tomasz, M. (2001) Reductive activation of mitomycin A by thiols, Org Lett 3, 2789-2792.
90. Paz, M. M., Das, A., Palom, Y., He, Q. Y., and Tomasz, M. (2001) Selective activation of mitomycin A by thiols to form DNA cross-links and monoadducts: biochemical basis for the modulation of mitomycin cytotoxicity by the quinone redox potential, J Med Chem 44, 2834-2842.
91. Abbas, T., Olivier, M., Lopez, J., Houser, S., Xiao, G., Kumar, G. S., Tomasz, M., and Bargonetti, J. (2002) Differential activation of p53 by the various adducts of mitomycin C, J Biol Chem 277, 40513-40519.
92. Palom, Y., Suresh Kumar, G., Tang, L. Q., Paz, M. M., Musser, S. M., Rockwell, S., and Tomasz, M. (2002) Relative toxicities of DNA cross-links and monoadducts: new insights from studies of decarbamoyl mitomycin C and mitomycin C, Chem Res Toxicol 15, 1398-1406.
93. Holtz, K. M., Rockwell, S., Tomasz, M., and Sartorelli, A. C. (2003) Nuclear overexpression of NADH:cytochrome b5 reductase activity increases the cytotoxicity of mitomycin C (MC) and the total number of MC-DNA adducts in Chinese hamster ovary cells, J Biol Chem 278, 5029-5034.
94. Paz, M. M., Kumar, G. S., Glover, M., Waring, M. J., and Tomasz, M. (2004) Mitomycin dimers: polyfunctional cross-linkers of DNA, J Med Chem 47, 3308-3319.
95. Seow, H. A., Penketh, P. G., Belcourt, M. F., Tomasz, M., Rockwell, S., and Sartorelli, A. C. (2004) Nuclear overexpression of NAD(P)H:quinone oxidoreductase 1 in Chinese hamster ovary cells increases the cytotoxicity of mitomycin C under aerobic and hypoxic conditions, J Biol Chem 279, 31606-31612.
96. Utzat, C. D., Clement, C. C., Ramos, L. A., Das, A., Tomasz, M., and Basu, A. K. (2005) DNA adduct of the mitomycin C metabolite 2,7-diaminomitosene is a nontoxic and nonmutagenic DNA lesion in vitro and in vivo, Chem Res Toxicol 18, 213-223.
97. Seow, H. A., Belcourt, M. F., Penketh, P. G., Hodnick, W. F., Tomasz, M., Rockwell, S., and Sartorelli, A. C. (2005) Nuclear localization of NADPH:cytochrome c (P450) reductase enhances the cytotoxicity of mitomycin C to Chinese hamster ovary cells, Mol Pharmacol 67, 417-423.
98. Boamah, E. K., White, D. E., Talbott, K. E., Arva, N. C., Berman, D., Tomasz, M., and Bargonetti, J. (2007) Mitomycin-DNA adducts induce p53-dependent and p53-independent cell death pathways, ACS Chemical Biology 2, 399-407.
99. Champeil, E., Paz, M. M., Ladwa, S., Clement, C. C., Zatorski, A., and Tomasz, M. (2008) Synthesis of an oligodeoxyribonucleotide adduct of mitomycin C by the postoligomerization method, via a triamino mitosene., J Am Chem Soc 130, 9556-9565.
100. Paz, M. M., Ladwa, S., Champeil, E., Liu, Y., Rockwell, S., Boamah, E. K., Bargonetti, J., Callahan, J., Roach, J., and Tomasz, M. (2008) Mapping DNA adducts of mitomycin C and decarbamoyl mitomycin C in cell lines using liquid chromatography/electrospray tandem mass spectrometry, Chem Res Toxicol 21, 2370-2378.
101. Tomasz, M. (2008) Drug-DNA interactions of the mitomycins, in Chemical Biology: The role of Chemistry in our fundamental understanding of Biology, The Biomedical & Life Sciences Collection (Austin, D., Ed.), Henry Stewart Talks Ltd., London.
102. Shen, X., Do, H., Li, Y., Chung, W. H., Tomasz, M., de Winter, J. P., Xia, B., Elledge, S. J., Wang, W., and Li, L. (2009) Recruitment of fanconi anemia and breast cancer proteins to DNA damage sites is differentially governed by replication, Mol Cell 35, 716-723.
103.     Boamah, E.,  Brekman, A., Tomasz, M., Myeku, N., Figureido-Pereira, M., and Bargonetti, J. (2010) DNA adducts of decarbamoyl mitomycin C efficiently kill cells with compromised p53 through proteasome-mediated degradation of Chk1, Chem. Res. Toxicol. 23, 1151-1162
104.  J. Bargonetti, E. Champeil and M. Tomasz, “Differential Toxicity of DNA Adducts of Mitomycin C” (A review). J. Nucleic Acids, v. 2010, Article ID 698960 (2010).
105.   M-w. Weng, Y. Zheng, V. P. Jasti,  E. Champeil, M. Tomasz, Y. Wang, A. K. Basu and M-s. Tang, “Repair of mitomycin C mono- and interstrand cross-linked DNA adducts by UvrABC: a new model”. Nucleic Acids Res.
  38, 6976-6984 (2010).