## Solutions:

1. Verify that the function satisfies the three hypotheses of the Mean Value Theorem (MVT) on the given interval. Then find all numbers c that satisfy the conclusion of the Mean Value Theorem.
a) $c=1$
b) $c=\left(\frac{1}{3}\right)^{\frac{3}{2}}$
c) $c=\sqrt{3}$
2. Show that the equation $x^{3}-15 x+c=0$ has at most one root in the interval $[-2,2]$.
3. If $f(1)=10$ and $f^{\prime}(x) \geq 2$, for $1 \leq x \leq 4$, how small can $f(4)$ possibly be?
$\because f^{\prime}(x) \geq 2$, for $1 \leq x \leq 4$
$\rightarrow f$ is differetitiable on [1, 4]
$\rightarrow f$ is continuous on $[1,4]$
$\rightarrow f^{\prime}(x)=\frac{f(4)-f(1)}{4-2} \wedge f^{\prime}(x) \geq 2$ [By MVT and Assumption]
$\rightarrow \frac{f(4)-f(1)}{4-2} \geq 2$
$\rightarrow f(4) \geq 2(4-2)+f(1)=4+10=14$
$\therefore f(4) \geq 14$
4. Does there exist a function $f$ such that $f(0)=-1, f(2)=4$ and $f^{\prime}(x) \leq 2$ for all $x$ ?
