Limits and Continuity

(Notes by Michael Samra)

Limits are used throughout Calculus. They are used to define the continuity of a function, the
derivative of a function, and the definite integral. In the second semester of Calculus, the limit of a
sequence is defined which is used to define infinite sums, called infinite series. Usually, though, it is not until a course in Advanced
Calculus that a student works closely with the technical definition of a limit.

The first use of a limit is to define the limit of a function at a point. Such a limit may, or may not
exist. If it does exist, call this limit L. Then limy, f(x) =L means, in general terms, that as x
approaches a (but not equal to a), f(x) approaches L. Note that this definition does not depend on
the actual value of the function at a: f may even not be defined at a, and we can still be asked to
find limy. f(%).

In each of the 3 cases below, limy_, f(x) =L, even though for the second graph, f is not defined

at a, and for the third graph, f(a) # L.
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Since x can approach a number a from the left or from the right, the following theorem should
make sense:

limyss f(x) =L if and only if limy,.- f(x) = L and lim,_,+ f(x) = L.

In other words, for the limit of a function f at a point a to exist, the limit as x approaches a from
the left (x - a™) must equal to the limit as x approaches a from the right (x - a*).

How can the limit of a function fail to exist at a point? One way follows from the above theorem,
and is illustrated by the first graph below, where limy_,.- f(x) = L; and lim,_,_+ {(x) = L, but
L; # L, Another way is if the values of the function continue to oscillate as x approaches the number a. An example is given by

f(x)= sin%(r as x approaches 0. sinixr essentially takes all the oscillations of sinzr x from x = 1 to oo, and squeezes them in from x = 1

to x = 0: no matter how close x is to 0, the values of f(x) = sini; continue to oscillate between —1 and 1.
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Example: Find hmxﬁoé :
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From the graph one sees that ;1 does not approach any fixed number as x - 0. Therefore,

the limit does not exist. However, to indicate that — Increases without bound as x = 0, one

can write:

. 1
hmxﬁo Q = 00.

Example: Find lim,_- i—ii .

Here, the numerator is approaching 7 and the denominator is approaching 0, so the limit

is either co or — oo. As x approaches 3 from the left, the numerator is positive and the denomi-

nator is negative, so the limit is —co.

The following rules for limits are used to evaluate limits:
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Limit Rules
Suppose limy, f(x) and limy,, g(x) exist, then

(1) limesa (F(0) + g(x) = limyoa £(0) + limysag(x). (v) limysa (FG)" = [limysa £(0]"
n a positive integer.

(i) Hmysac f(x) = climysa f(X) ., c any constant.
(vi) limysa () = [limya f(x)]=.na

(iil) limysa (f(x)-g(x)) = limysa £(x) - limya g(x). positive integer and limy_, £ (x) > 0
for n even.

) A fe)  limea fG0 o,
(iv) limya EEfalT———, if limy4 g(x) # 0.

For many familiar functions, to find their limit at some number a, you simply have to evaluate
the function at a. To show this for polynomial functions, first consider the function f(x) = ¢ x™.
Applying the special limit

limy,,x=a (see the graph below)

lim,_x=a

and limit rules (ii) and (v) yield: limy,a (%) = limy,ac x™" = climy,,x" =ca” = f(a).

For polynomial functions P(x) = ¢, X" + ¢y X1+ . +¢; x + ¢, we can now apply limit rule (i) to obtain:
limy ., P(%) = limya (Cp X" 4+ Cpy XL+ L 40 X+ Cg)=cpa + ¢ a4+ .. 4 a+ ¢ = P(a).
For quotients of polynomial functions R(x) = g—ii)) , called rational functions, apply limit rule (iv) to
obtain:
; — 1 o _P@ _
limyoq R(x) = limy_,4 oo = 0 = R(a) (where Q(a) # 0).

This is summarized in the following theorem:
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This is summarized in the following theorem:

Substitution Theorem:

Let f be a polynomial function or a rational function, and a in the domain of f. Then

limyo. £ (%) = £(a).
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Example: lim,_3

The substitution theorem also holds for root functions and trigonometric functions.

Not all limits can be evaluated using the substitution theorem. A common example occurs when evaluation of the function at the
. . 0 L .
number a yields an expression of the form 5. For these problems, it is usually necessary to factor the numerator and/or denominator tc

eliminate common factors.
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Example: Find lim_, ———

(x+4) (x=2) _ x+4

This function is not defined at x = 2. However, since
(x+2) (x—Z) X+2

for x # 2, (in other

words, —®has the same graph as — except at x = 2, where it is not defined),
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Example: Find lim,.; (ﬁ -—).

This limit has the form of co — co. To evaluate, combine the fractions, and then eliminate

the common factor;
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Example: Find limyo NN

Notice that the limit of both the numerator and denominator are 0. To find the
limit, multiply the numerator and denominator by the conjugate of the denominator.
This will eliminate the square roots in the denominator.
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A theorem that is useful in proofs involving limits is the following:

Squeeze Theorem (or Pinching Theorem)
Suppose f(x) < g(x) < h(x) for any x near a, and that limy_,, f (x) = limy,h(x) = L. Then

limy,ag(x) = L.

This theorem is illustrated by the graph below:
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Example: Show lim,ox* cos— = 0.

X

Since -1 = cosx < 1 (for any x), -1 <cos— < 1. Hence, x-(~1) < x?-cos — < x?- 1.
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Furthermore, since limy_(—=x?) = 0 = limy_p X%, limy_q X cos = 0 by the Squeeze

Theorem.



Continuity

The methods of Calculus apply to functions that satisfy certain conditions. The first of these is
continuity. In the next section, a more specific condition, called differentiability, is defined.

Definition:  Letf be defined on an open interval containing a. Then f is continuous at a if:

(1) limyoa f(x) exists
(11) hmx—>a f(X) = f(a)

In other words, for a function to be continuous at a point a in its domain, the limit has to exist at a,
and furthermore, that limit has be equal to the value of the function at a.

If condition (i) is violated, then f is said to have an essential singularity at a. If condition (i) holds, but condition (ii) is violated, ther

f is said to have a removable singularity at a (see the graphs below).
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Example:
X+ 1, x<1
Let f(x) = { » X>1H.

Determine if f(x) is continuous at a = 1.

Solution:  First determine if the limit exists at 1. This is done by finding whether the limit
from the left is equal to the limit from the right at 1:

limy_i- £ (%) = limg, - (x% + 1) = 2. lim,;+ (%) = lim,,;+ (2 x) = 2. Therefore

hmxﬁl f(X) =2
Now find whether this number is equal to the value of f at 1:
f(h=12+1=2

We conclude that since limy_,; f(x) =2 = f(1), f is continuous at a = 1.



Examples of functions that are continuous at every point in their domains include: polynomial functions, rational functions, root

functions, and trigonometric functions. This follows from the Substitution Theorem above. Combinations of continuous functions are
also continuous. More specifically:

Theorem: Suppose f and g are continuous at the point a. Then

i) cf,cany constant v) f-g
i) f+g V) —; (where g(a) £ 0)
i) f — g

are continuous at a.
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For example, the function h(x) = +Vx is continuous at every real number.

Compositions of continuous functions are also continuous. In particular:

Theorem: Suppose g is continuous at a and f is continuous at g(a). Then f og is continuous
at a.

For example, h(x) = sin3(\/ X —4 ) is continuous wherever it is defined (x = 4).

One reason for the importance of continuous functions is given by the following theorem:

Intermediate Value Theorem:

Suppose f is continuous on the closed interval [a , b], and C is any number between f(a) and
f(b). Then there exists a number ¢ in (a , b) for which f(c) = C.

The Intermediate Value Theorem says that a continuous function on a closed interval [a , b] doesn't
skip any values between f(a) andf (b). It can be used to show that a solution to an equation exists.

Example: Use the Intermediate Value Theorem to show that 2 x> + 5 x — 9 = 0 has a solution
between 1 and 2.

Solution: Let f(x) =2 x> +5x—9. Since fis continuous, and f (1) = -2and f(2) = 17, then for
some ¢ between 1 and 2, f(c) = 0.

Two methods that are often learnt in Calculus to approximate the location of ¢ are the bisection method and Newton's method.



