1. Find a power series representation of the function and determine the radius of convergence.

 a) \(f(x) = \frac{1}{1+x} \).

 b) \(f(x) = \frac{x}{1-4x^2} \).

 c) \(f(x) = \frac{1}{3+2x} \).

 d) \(f(x) = \frac{1}{(1+x)^2} \) (Hint: differentiate the function in (a))

 e) \(f(x) = \frac{x}{(1+x)^3} \).

 f) \(f(x) = x \ln(1 + x) \).

2. Approximate \(\int_0^{25} x \tan^{-1} x \, dx \) to 6 decimal places.

3. Find the Maclaurin series for \(f(x) = \cos 2x \) using the definition of a Maclaurin series, and show that the radius of convergence is \(\infty \).

4. Find the Taylor series for \(f(x) = \ln x \) centered at \(a = 2 \).

5. Use known Maclaurin series to obtain a Maclaurin series for the given function.

 a) \(f(x) = \sin x^2 \).

 b) \(f(x) = x e^{-x} \).

6. Evaluate the indefinite integral \(\int_0^\cos x \frac{\cos x}{x} \, dx \) as an infinite series.

7. Use the binomial series to find the first four terms of the Maclaurin series of \(f(x) = \sqrt{4 + x^2} \).