PRECALCULUS PROBLEM SESSION \#12

Double-Angle, Power-Reducing, and Half-Angle Formulas

1. Use the information to find the exact value of each of the following: a) $\sin 2 \theta \quad$ b) $\cos 2 \theta \quad$ c) $\tan 2 \theta$

$$
\text { i) } \sin \theta=\frac{12}{13}, \theta \text { lies in quadrant II } \quad \text { ii) } \cot \theta=3, \theta \text { lies in quadrant III }
$$

2. Use a half-angle formula to find the exact value of each expression:
a. $\cos 22.5^{\circ}$
b. $\sin 105^{\circ}$
c. $\tan \frac{3 \pi}{8}$
3. Use the given information to find the exact value of each of the following: a) $\sin \frac{\alpha}{2}$
b) $\cos \frac{\alpha}{2}$
c) $\tan \frac{\alpha}{2}$
a. $\tan \alpha=\frac{8}{15}, 180^{\circ}<\alpha<270^{\circ}$
b. $\sec \alpha=-3, \frac{\pi}{2}<\alpha<\pi$
4. Use the power-reducing formula to rewrite the expression as an equivalent expression that does not contain powers of trigonometric functions greater than $1.10 \cos ^{4} x$
5. Find all the errors in the following and then verify that this solution is NOT an identity by plugging in $x=\pi$

$$
\begin{aligned}
& 2 \sin ^{2} 2 x+\cos 4 x \\
& =2(2 \sin x \cos x)^{2}+2 \cos 2 x \\
& =8 \sin ^{2} x \cos ^{2} x+2\left(\cos ^{2} x+\sin ^{2} x\right) \\
& =8 \sin ^{2} x \cos ^{2} x+2
\end{aligned}
$$

6. Explain how $\cos 2 A=2 \cos ^{2} A-1$ and $\cos 2 A=1-2 \sin ^{2} A$ can both be derived from $\cos 2 A=\cos ^{2} A-\sin ^{2} A$.

Trigonometric Equations

1. We are interested in solutions to $\cos x=0.5$. The figure below shows a partial graph of both sides of the equation:
(a) How many solutions does the equation have on the interval [$0,2 \pi$)? What are they?
(b) How many solutions does the equation have on the interval $(-\infty, \infty)$?

Discuss a method of writing all solutions to the equation.
2. Find all solutions of each equation:

a. $\cos x=\frac{\sqrt{3}}{2}$
b. $\tan x=\sqrt{3}$
c. $2 \sin x+\sqrt{3}=0$
d. $\cos 2 x=\frac{\sqrt{2}}{2}$
3. Solve each equation on the interval $[0,2 \pi)$:
a. $\cos 2 x=\frac{\sqrt{2}}{2}$
b. $\tan \frac{x}{2}=\frac{\sqrt{3}}{3}$
c. $2 \sin ^{2} x+\sin x-1=0$
d. $\cos ^{2} x+2 \cos x-3=0$
e. $3 \tan ^{2} x-9=0$
4. Does $5 \sin x=7$ have a solution for x ? Why or why not?
5. Jan lists her answer to a problem as $\frac{\pi}{6}+k \pi$ for any integer k, while Jacob lists his answer as $\frac{\pi}{6}+(2 \pi) k$ and $\frac{7 \pi}{6}+(2 \pi) k$, for any integer k. Are their answers equivalent? Why or why not?
6. Use an identity to solve the equation $2 \cos ^{2} x-\sin x-1=0$ on the interval $[0,2 \pi)$.

