PRECALCULUS PROBLEM SESSION #12

Double-Angle, Power-Reducing, and Half-Angle Formulas

- 1. Use the information to find the exact value of each of the following: a) $\sin 2\theta$ b) $\cos 2\theta$ c) $\tan 2\theta$ i) $\sin \theta = \frac{12}{13}$, θ lies in quadrant II ii) $\cot \theta = 3$, θ lies in quadrant III
- 2. Use a half-angle formula to find the exact value of each expression:
- a. $\cos 22.5^{\circ}$ b. $\sin 105^{\circ}$ c. $\tan \frac{3\pi}{8}$ 3. Use the given information to find the exact value of each of the following: a) $\sin \frac{\alpha}{2}$ b) $\cos \frac{\alpha}{2}$ c) $\tan \frac{\alpha}{2}$

a.
$$\tan \alpha = \frac{8}{15}$$
, $180^{\circ} < \alpha < 270^{\circ}$ **b.** $\sec \alpha = -3$, $\frac{\pi}{2} < \alpha < \pi$

- 4. Use the power-reducing formula to rewrite the expression as an equivalent expression that does not contain powers of trigonometric functions greater than 1. $10 \cos^4 x$
- 5. Find all the errors in the following and then verify that this solution is NOT an identity by plugging in $x = \pi$

$$2\sin^{2} 2x + \cos 4x$$

= 2(2sin x cos x)² + 2cos 2x
= 8sin² x cos² x + 2(cos² x + sin² x)
= 8sin² x cos² x + 2

6. Explain how $\cos 2A = 2 \cos^2 A - 1$ and $\cos 2A = 1 - 2 \sin^2 A$ can both be derived from $\cos 2A = \cos^2 A - \sin^2 A$.

Trigonometric Equations

1. We are interested in solutions to $\cos x = 0.5$. The figure below shows a partial graph of both sides of the equation: (a) How many solutions does the equation have on the interval $[0, 2\pi)$? What are they?

(b) How many solutions does the equation have on the interval $(-\infty, \infty)$? Discuss a method of writing all solutions to the equation.

2. Find all solutions of each equation: a. $\cos x = \frac{\sqrt{3}}{2}$ b. $\tan x = \sqrt{3}$ c. $2 \sin x + \sqrt{3} = 0$ d. $\cos 2x = \frac{\sqrt{2}}{2}$

Solve each equation on the interval $[0,2\pi)$: 3.

a. $\cos 2x = \frac{\sqrt{2}}{2}$ b. $\tan \frac{x}{2} = \frac{\sqrt{3}}{3}$ d. $\cos^2 x + 2\cos x - 3 = 0$ e. $3\tan^2 x - 9 = 0$

c. $2\sin^2 x + \sin x - 1 = 0$

-4π

-3 *π* -2 *π* π

2π

3π

- 4. Does 5 sin x = 7 have a solution for x? Why or why not?
- 5. Jan lists her answer to a problem as $\frac{\pi}{6} + k\pi$ for any integer k, while Jacob lists his answer as

 $\frac{\pi}{6}$ + (2 π)k and $\frac{7\pi}{6}$ + (2 π)k, for any integer k. Are their answers equivalent? Why or why not?

6. Use an identity to solve the equation $2\cos^2 x - \sin x - 1 = 0$ on the interval $[0,2\pi)$.