PRECALCULUS PROBLEM SESSION \#14

Systems of Linear Equations in Two Variables

1. How many solutions can a system of two linear equations in two variables have? Give geometric interpretations of each case.
2. Determine whether either of the points $(-1,-5)$ and $(0,-2)$ is a solution to the given system of equations:

$$
\begin{aligned}
& y=3 x-2 \\
& y=-x-6
\end{aligned}
$$

3. Solve by using the substitution method:
a. $\left\{\begin{array}{c}2 x-3 y=-13 \\ y=2 x+7\end{array}\right.$
b. $\left\{\begin{array}{l}x=3 y+7 \\ x=2 y-1\end{array}\right.$
4. Solve by using the addition method:
a. $\left\{\begin{array}{c}2 x-7 y=2 \\ 3 x+y=-20\end{array}\right.$
b. $\left\{\begin{array}{l}2 x+3 y=-16 \\ 5 x-10 y=30\end{array}\right.$
5. Solve by using any method. Identify systems with no solutions and systems with infinitely many solutions using set notation to express the solution set.
a. $\left\{\begin{array}{c}6 x+2 y=7 \\ y=2-3 x\end{array}\right.$
b. $\left\{\begin{array}{c}4 x-2 y=2 \\ 2 x-y=1\end{array}\right.$
c. $\left\{\begin{array}{c}4 x=3 y+8 \\ 2 x=-14+5 y\end{array}\right.$

Systems of Nonlinear Equations in Two Variables

1. Solve the system:
$y=-x-3$
b. $x y=1$
$y=x^{2}$
a. $x^{2}+y^{2}=17$
b. $x+y=2$
C. $x^{2}+(y-2)^{2}=4$
2. Solve by using the substitution method:
a. $\left\{\begin{array}{l}x-y=-1 \\ y=x^{2}+1\end{array}\right.$
b. $\left\{\begin{array}{c}x^{2}+y^{2}=5 \\ 3 x-y=5\end{array}\right.$
c. $\left\{\begin{array}{c}x y=4 \\ x^{2}+y^{2}=8\end{array}\right.$
3. Solve by using the addition method:

$$
\left\{\begin{array}{c}
3 x^{2}-2 y^{2}=-5 \\
2 x^{2}-y^{2}=-2
\end{array}\right.
$$

4. Solve by using any method:
a. $\left\{\begin{array}{c}3 x^{2}-2 y^{2}=1 \\ 4 x-y=3\end{array}\right.$
b. $\left\{\begin{array}{c}x-3 y=-5 \\ x^{2}+y^{2}-25=0\end{array}\right.$
c. $\left\{\begin{array}{l}3 x^{2}+2 y^{2}=35 \\ 4 x^{2}-3 y^{2}=24\end{array}\right.$
