PRECALCULUS PROBLEM SESSION \#5

Polynomial Functions and Their Graphs

1. Are the functions in (a) through (f) polynomials? If so, of what degree?
a) $y=4 x^{2}+2$
b) $y=5^{x}-2$
c) $y=5+x$
d) $y=4 x^{4}-3 x^{3}+2 e^{x}$
e) $f(x)=7 x^{2}+9 x^{4}$
f) $h(x)=8 x^{3}-x^{2}+\frac{2}{x}$
2. Use the Leading Coefficient Test to find out the graph's end behavior. Find the x-intercepts and y-intercepts. Determine whether the graph as y-axis symmetry, origin symmetry, or neither.
a) $f(x)=x^{4}-x^{2}$
b) $f(x)=-2(x-4)^{2}\left(x^{2}-25\right)$
3. Describe in words the long-run behavior as $x \rightarrow \infty$ of the following functions in questions a-d. What power function does each resemble?
(a) $y=16 x^{3}-430 x^{2}-2$
(b) $y=4 x^{4}-2 x^{2}+3$
(c) $y=3 x^{3}+\frac{2 x^{2}}{x^{-7}}-7 x^{5}+2$
(d) $y=\frac{5 x^{2}}{x^{\frac{3}{2}}}+2$
4. Use the Intermediate Value Theorem to show that the polynomial has a real zero between the given integers.
(a) $f(x)=x^{4}+6 x^{3}-18 x^{2}$ between 2 and 3
(b) $f(x)=x^{3}-4 x^{2}+2$ between 0 and 1
5. Find the zeros for the function $f(x)=2(x+5)(x+2)^{2}$. What is the multiplicity for each zero? Does the graph cross the x -axis, or touch the x-axis and turns around, at each zero? Then graph the polynomial. Use the Leading Coefficient Test to determine the graph's end behavior. Find the y-intercept. Determine whether the graph has yaxis symmetry, origin symmetry, or neither. And, if necessary, find a few additional points and graph the function. Use the maximum number of turning points to check whether it is drawn correctly.
6. If r is a real zero of a polynomial $P(x)$ with real coefficients, then r is also an x intercept for the graph of $P(x)$. Discuss the difference between the graph of $P(x)$ at a real zero of odd multiplicity and at a real zero of even multiplicity.
7. Which graphs are not polynomial functions?
a.

b.

8. Graph: $f(x)=-x^{2}(x+2)(x-2)$

Dividing Polynomials

1. When you divide a polynomial by a binomial and there is no remainder, what does that tell you about the quotient and the divisor?
2. Explain whether or not the remainder will always be a constant when a polynomial in x is divided by a binomial of the form $x-a$.
3. When dividing a polynomial by another polynomial, suppose the remainder is not 0 but its degree is less than that of the divisor. Explain whether or not the division could continue.
4. Divide using long division. State the quotient, $\mathrm{q}(\mathrm{x})$, and the remainder, $\mathrm{r}(\mathrm{x})$.
a. $\left(x^{3}-2 x^{2}-5 x+6\right) \div(x-3)$
b. $\frac{3 x^{2}-2 x+5}{x-3}$
c. $\frac{x^{4}-81}{x-3}$
d. $\frac{2 x^{5}-8 x^{4}+2 x^{3}+x^{2}}{2 x^{3}+1}$
5. Divide using synthetic division:
a. $\left(5 x^{3}-6 x^{2}+3 x+11\right) \div(x-2)$
b. $\left(x^{2}+x-2\right) \div(x-1)$
6. Use synthetic division and the Remainder Theorem to find the indicated value:

$$
f(x)=x^{3}-7 x^{2}+5 x-6 \text { for } f(3)
$$

7. Solve the equation $2 x^{3}-3 x^{2}-11 x+6=0$ given that -2 is a zero of $f(x)=2 x^{3}-3 x^{2}-11 x+6$.
8. Without actually dividing, find the remainder when $x^{39}+1$ is divided by $x-1$.
