Inverse Trigonometric Functions

1.

a) $\pi / 3$
a) $2 \pi / 3$
b) $-\pi / 3$
b) $2 \pi / 3$
c) 0
c) $-\pi / 4$
d) $-\pi / 6$
2.

Because the range of $\sin ^{-1}(x)$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
3.
4.
a) $12 / 5$
b) $\frac{2 \sqrt{3}}{3}$
5. (a) $\sqrt{1-4 x^{2}}$
(b) x
6. The ranges of some inverse trigonometric functions are restricted: $\sin ^{-1} x, \cos ^{-1} x, \csc ^{-1} x$ and $\sec ^{-1} x$. This is because the domains of the corresponding trigonometric functions are restricted, in order for them to become one-to-one functions, so that they may have inverses, and since the domain of a function becomes the range of the inverse, it follows that the ranges of these inverse functions are restricted.

Applications of Trigonometric Functions

1. $\mathrm{C}=90^{\circ}, \mathrm{B}=48.5^{\circ}, a=17.6945, c=26.7038$
2. $-8 \cos (\pi t)$
3. a) 8 inches b) $1 / 4$ cycle per second \quad c) The time required for one cycle is 4 seconds.
4. The height of the building is approximately 24 feet.
5. The stolen car is approximately 260 feet from a point directly below the helicopter.
6. The angle of elevation of the sun is approximately 80.9°.
7. The height of the flagpole is approximately 209.8 feet.

Verifying Trigonometric Identities

1. $\cos ^{2} x+\sin ^{2} x=1$
$\frac{\cos ^{2} x}{\cos ^{2} x}+\frac{\sin ^{2} x}{\cos ^{2} x}=\frac{1}{\cos ^{2} x} \Rightarrow 1+\tan ^{2} x=\sec ^{2} x$
$\frac{\cos ^{2} x}{\sin ^{2} x}+\frac{\sin ^{2} x}{\sin ^{2} x}=\frac{1}{\sin ^{2} x} \Rightarrow \cot ^{2} x+1=\csc ^{2} x$
2. A trigonometric equation that is an identity is ALWAYS true, while a trigonometric equation that is not an identity is only true for certain values of the variable.
$\cos ^{2} x+\sin ^{2} x=1$ is always true, while $\cos x=1 / 2$ is sometimes true.
3.

$$
\begin{aligned}
\csc x-\csc x \cos ^{2} x & =\csc x\left(1-\cos ^{2} x\right) \\
& =\frac{1}{\sin x} \cdot \sin x^{2} \\
& =\sin x
\end{aligned}
$$

a)
c)
g)

$1-\frac{\cos ^{2} x}{1+\sin x}$	$=1-\frac{\cos ^{2}}{1+\sin x} \cdot \frac{1-\sin x}{1-\sin x}$
	$=1-\frac{\cos ^{2} x(1-\sin x)}{1-\sin ^{2} x}$
	$=1-\frac{\cos ^{2} x(1-\sin x)}{\cos ^{2} x}$
	$=1-1+\sin x$
	$=\sin x$

h)
$\left\{\begin{array}{l}\frac{\sin x}{\cos x+1}+\frac{\cos x-1}{\sin x} \\ =\frac{\sin x}{\cos x+1} \cdot \frac{\cos x-1}{\cos x-1}+\frac{\cos x-1}{\sin x} \\ =\frac{\sin x(\cos x-1)}{\cos ^{2} x-1}+\frac{\cos x-1}{\sin x} \\ =\frac{\sin x(\cos x-1)}{-\sin ^{2} x}+\frac{\cos x-1}{\sin x} \\ =\frac{\sin x(1-\cos x)}{\sin ^{2} x}+\frac{\cos x-1}{\sin x} \\ =\frac{1-\cos x}{\sin x}+\frac{\cos x-1}{\sin x} \\ =\frac{0}{\sin x} \\ =0\end{array}\right.$
i)

$$
\begin{aligned}
\frac{\csc x-\sec x}{\csc x+\sec x} & =\frac{\frac{1}{\sin x}-\frac{1}{\cos x}}{\frac{1}{\sin x}+\frac{1}{\cos x}} \\
& =\frac{\frac{1}{\sin x}-\frac{1}{\cos x}}{\frac{1}{\sin x}+\frac{1}{\cos x}} \cdot \frac{\cos x}{\cos x} \\
& =\frac{\frac{\cos x}{\sin x}-1}{\frac{\cos x}{\sin x}+1} \\
& =\frac{\cot x-1}{\cot x+1}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\cos \theta \sec \theta}{\cot \theta} & =\frac{\frac{\cos \theta}{1} \cdot \frac{1}{\cos \theta}}{\frac{\cos \theta}{\sin \theta}} \\
& =\frac{1}{\frac{\cos \theta}{\sin \theta}} \\
& =1 \div \frac{\cos \theta}{\sin \theta} \\
& =1 \cdot \frac{\sin \theta}{\cos \theta} \\
& =\tan \theta
\end{aligned}
$$

$$
\begin{aligned}
& \text { Left side: } \\
& \begin{aligned}
\frac{\cos ^{2} t+4 \cos t+4}{\cos t+2} & =\frac{(\cos t+2)(\cos t+2)}{\cos t+2} \\
& =\cos t+2
\end{aligned}
\end{aligned}
$$

Right side:

$$
\begin{aligned}
\frac{2 \sec t+1}{\sec t} & =\frac{2 \sec t}{\sec t}+\frac{1}{\sec t} \\
& =2+\cos t \\
& =\cos t+2
\end{aligned}
$$

The identity is verified because both sides are equal to $\cos t+2$.

PRECALCULUS PROBLEM SESSION \#11 SOLUTIONS

Sum and Distance Formulas

1.

a) $\frac{\sqrt{2}+\sqrt{6}}{4}$
b) $\frac{\sqrt{2}-\sqrt{6}}{4}$ c) $\quad-2-\sqrt{3}$
2.
a) $\frac{\sqrt{3}}{3}$
b) 1

$$
\cos (\alpha+\beta)+\cos (\alpha-\beta)
$$

$$
=\cos \alpha \cos \beta-\sin \alpha \sin \beta
$$

$$
+\cos \alpha \cos \beta+\sin \alpha \sin \beta \mid
$$

3. $=2 \cos \alpha \cos \beta$
4. Part a)
a) $-4 / 5$
b) $-3 / 5$
c) $3 / 4$

Part b)

a) $\frac{-6-4 \sqrt{5}}{15}$
b) $\quad \frac{8-3 \sqrt{5}}{15}$ c) $\frac{54-25 \sqrt{5}}{22}$

