Double-Angle, Power-Reducing, and Half-Angle Formulas

1. Part i)
a) $-\frac{120}{169}$
b) $-\frac{119}{169}$
c) $\frac{120}{169}$

Part ii)

a) $\frac{3}{5}$
b) $\frac{4}{5}$
c) $\frac{3}{4}$
2.
a) $\frac{\sqrt{2+\sqrt{2}}}{2}$
b) $\frac{\sqrt{2+\sqrt{3}}}{2}$
c) $\sqrt{2}+1$
3. Solving for (a) $\boldsymbol{\operatorname { s i n }} \frac{\alpha}{2}$, (b) $\boldsymbol{\operatorname { c o s }} \frac{\alpha}{2}$, and (c) $\boldsymbol{\operatorname { t a n }} \frac{\alpha}{2}$

Part a
(a) $\frac{4 \sqrt{17}}{17}$
(b) $\quad-\frac{\sqrt{17}}{17}$
(c) $\quad-4$

Part b
(a) $\frac{\sqrt{6}}{3}$
(b) $\frac{\sqrt{3}}{3}$
(c) $\sqrt{2}$
4. $\frac{15}{4}+5 \cos 2 x+\frac{5}{4} \cos 4 x$
5. Errors: $\cos 4 x \neq 2 \cos 2 x$ and $\cos 2 x \neq\left(\cos ^{2} x+\sin ^{2} x\right)$

$$
2 \sin ^{2} 2 \pi+\cos 4 \pi=1
$$

Verifying with $\boldsymbol{x}=\boldsymbol{\pi}$ gives: $8 \sin ^{2} \pi \cos ^{2} \pi+2=2$

$$
1 \neq 2
$$

6. $\cos 2 A=\cos ^{2} A-\sin ^{2} A==\cos ^{2} A-\sin ^{2} A+\cos ^{2} A-\cos ^{2} A=2 \cos ^{2} A-\left(\sin ^{2} A+\cos ^{2} A\right)=$ $=2 \cos ^{2} A-1$

$$
\begin{aligned}
& \cos 2 A=\cos ^{2} A-\sin ^{2} A==\cos ^{2} A-\sin ^{2} A+\sin ^{2} A-\sin ^{2} A=\left(\cos ^{2} A+\sin ^{2} A\right)-2 \sin ^{2} A= \\
& =1-2 \sin ^{2} A
\end{aligned}
$$

Trigonometric Equations

1. (A) The equation has two solutions on the interval $[0,2 \pi): x=\frac{\pi}{3}$ and $x=\frac{5 \pi}{3}$.
(B) The equation has infinitely many solutions on the interval $(-\infty, \infty)$:

$$
\begin{aligned}
& x=\frac{\pi}{3}+2 k \pi, k \text { is any integer } \\
& x=\frac{5 \pi}{3}+2 k \pi, k \text { is any integer }
\end{aligned}
$$

2. a) $x=\frac{\pi}{6}+2 k \pi$ or $x=\frac{11 \pi}{6}+2 k \pi, k$ is any integer

PRECALCULUS PROBLEM SESSION \#12 SOLUTIONS

b) $\quad x=\frac{\pi}{3}+k \pi, k$ is any integer
c) $x=\frac{4 \pi}{3}+2 k \pi$ or $x=\frac{5 \pi}{3}+2 k \pi, k$ is any integer
d) $x=\frac{\pi}{8}+k \pi$ or $x=\frac{15 \pi}{8}+k \pi, k$ is any integer
3. a) The solutions are $\frac{\pi}{8}, \frac{7 \pi}{8}, \frac{9 \pi}{8}$, and $\frac{15 \pi}{8}$.
b) The solution is $\frac{\pi}{3}$.
c) The solutions are $\frac{\pi}{6}, \frac{5 \pi}{6}$, and $\frac{3 \pi}{2}$.
d) The solution is 0 .
e) The solutions are $\frac{\pi}{3}, \frac{2 \pi}{3}, \frac{4 \pi}{3}$, and $\frac{5 \pi}{3}$.
4. No, the equation $5 \sin x=7$ does not have a solution, since the function $y=5 \sin x$ has an amplitude of 5 and therefore will never be equal to 7 .
5. No, Jan's and Jacob's answers are different. $\frac{\pi}{6}+k \pi=\frac{7 \pi}{6}+(2 \pi) k$ only when k is odd. Thus the expression $\frac{\pi}{6}+k \pi$ has twice as many values as the expression $\frac{7 \pi}{6}+(2 \pi) k$ does.
6. The solutions are $\frac{\pi}{6}, \frac{5 \pi}{6}$, and $\frac{3 \pi}{2}$.

