PRECALCULUS PROBLEM SESSION #12 SOLUTIONS

Double-Angle, Power-Reducing, and Half-Angle Formulas

1. Part i) b) $-\frac{119}{169}$ 120 120 a) c) 169 169 Part ii) a) $\frac{3}{5}$ b) $\frac{4}{5}$ c) $\frac{3}{4}$ a) $\frac{\sqrt{2+\sqrt{2}}}{2}$ b) $\frac{\sqrt{2+\sqrt{3}}}{2}$ c) $\sqrt{2}+1$ Solving for (a) $\sin\frac{\alpha}{2}$, (b) $\cos\frac{\alpha}{2}$, and (c) $\tan\frac{\alpha}{2}$ 2. 3. Part a $\frac{4\sqrt{17}}{17}$ (b) $-\frac{\sqrt{17}}{17}$ (c) -4(a) Part b (b) $\frac{\sqrt{3}}{3}$ $\frac{\sqrt{6}}{3}$ (c) $\sqrt{2}$ (a) $\frac{15}{4} + 5\cos 2x + \frac{5}{4}\cos 4x$ 4. Errors: $\cos 4x \neq 2 \cos 2x$ and $\cos 2x \neq (\cos^2 x + \sin^2 x)$ 5. $2\sin^2 2\pi + \cos 4\pi = 1$ Verifying with $\mathbf{x} = \mathbf{\pi}$ gives: $8\sin^2 \pi \cos^2 \pi + 2 = 2$ $1 \neq 2$ $\cos 2A = \cos^2 A - \sin^2 A = \cos^2 A - \sin^2 A + \cos^2 A - \cos^2 A = 2\cos^2 A - (\sin^2 A + \cos^2 A) = \cos^2 A - (\sin^2 A + \cos^2 A) = \cos^2 A - \sin^2 A + \cos^2 A +$ 6. $= 2\cos^2 A - 1$

$$\cos 2A = \cos^2 A - \sin^2 A = \cos^2 A - \sin^2 A + \sin^2 A - \sin^2 A = (\cos^2 A + \sin^2 A) - 2\sin^2 A = \cos^2 A + \sin^2 A$$

 $=1-2\sin^2 A$

Trigonometric Equations

1. (A) The equation has two solutions on the interval [0, 2π): $x = \frac{\pi}{3}$ and $x = \frac{5\pi}{3}$.

(B) The equation has infinitely many solutions on the interval $(-\infty, \infty)$:

$$x = \frac{\pi}{3} + 2k\pi$$
, *k* is any integer
 5π

$$x = \frac{3\pi}{3} + 2k\pi$$
, *k* is any integer

2. a)
$$x = \frac{\pi}{6} + 2k\pi$$
 or $x = \frac{11\pi}{6} + 2k\pi$, *k* is any integer

PRECALCULUS PROBLEM SESSION #12 SOLUTIONS

b)
$$x = \frac{\pi}{3} + k\pi$$
, *k* is any integer

c)
$$x = \frac{4\pi}{3} + 2k\pi$$
 or $x = \frac{5\pi}{3} + 2k\pi$, *k* is any integer

d)
$$x = \frac{\pi}{8} + k\pi$$
 or $x = \frac{15\pi}{8} + k\pi$, *k* is any integer

3. a) The solutions are
$$\frac{\pi}{8}$$
, $\frac{7\pi}{8}$, $\frac{9\pi}{8}$, and $\frac{15\pi}{8}$

b) The solution is $\frac{\pi}{3}$.

c) The solutions are
$$\frac{\pi}{6}$$
, $\frac{5\pi}{6}$, and $\frac{3\pi}{2}$.

- d) The solution is 0.
- e) The solutions are $\frac{\pi}{3}$, $\frac{2\pi}{3}$, $\frac{4\pi}{3}$, and $\frac{5\pi}{3}$.
- 4. No, the equation $5 \sin x = 7$ does not have a solution, since the function $y = 5 \sin x$ has an amplitude of 5 and therefore will never be equal to 7.
- 5. No, Jan's and Jacob's answers are different. $\frac{\pi}{6} + k\pi = \frac{7\pi}{6} + (2\pi)k$ only when k is odd. Thus the expression $\frac{\pi}{6} + k\pi$ has twice as many values as the expression $\frac{7\pi}{6} + (2\pi)k$ does.
- 6. The solutions are $\frac{\pi}{6}$, $\frac{5\pi}{6}$, and $\frac{3\pi}{2}$.