PRECALCULUS PROBLEM SESSION #4 SOLUTIONS

Complex Numbers

e) $-\frac{3}{8} + \frac{\sqrt{7}}{16}i$ f) -4 - 28i g) $-\frac{12}{13} - \frac{18}{13}i$ 1. b) 1 c) 2 + 16*i* d) 53 a) 3 + 6*i* $-\frac{5}{13}+\frac{14}{13}i$ b) $\frac{17}{25}-\frac{6}{25}i$ 2. a) $\left\{-\frac{1}{2}+\frac{\sqrt{5}}{2}i, -\frac{1}{2}-\frac{\sqrt{5}}{2}i\right\}$ The solution set is 3. a) $\left\{\frac{2}{3}+\frac{\sqrt{14}}{3}i,\frac{2}{3}-\frac{\sqrt{14}}{3}i\right\}$ The solution set is b) When $b^2 - 4ac < 0$. 4.

Quadratic Functions

1. The vertex of the parabola is the lowest or the highest point on the parabola, therefore, its *y*-coordinate is the minimum or the maximum value the function can produce.

(c)

 $f(x) = 6 - 4x + x^2$ $f(x) = x^2 - 4x + 6$ $f(x) = x^2 - 2x - 15$ $f(x) = (x^2 - 4x + 4) + 6 - 4$ $f(x) = (x^2 - 2x + 1) - 15 - 1$ $f(x) = (x-1)^2 - 2$ vertex: (1, -2) $f(x) = (x-2)^2 + 2$ $f(x) = (x-1)^2 - 16$ *x*-intercepts: vertex: (2, 2) vertex: (1, -16) $0 = (x-1)^2 - 2$ *x*-intercepts: x-intercepts: $0 = (x-2)^2 + 2$ $(x-1)^2 = 2$ $0 = (x-1)^2 - 16$ $(x-2)^2 = -2$ $x-1=\pm\sqrt{2}$ $(x-1)^2 = 16$ $x-2=\pm i\sqrt{2}$ $x = 1 \pm \sqrt{2}$ $x - 1 = \pm 4$ $x = 2 \pm i\sqrt{2}$ y-intercept: x = -3 or x = 5No x-intercepts $f(0) = (0-1)^2 - 2 = -1$ y-intercept: y-intercept: $f(0) = 0^2 - 2(0) - 15 = -15$ The axis of symmetry is x = 1. $f(0) = 6 - 4(0) + (0)^{2} = 6$ The axis of symmetry is x = 1. The axis of symmetry is x = 2. $\sqrt{2},0)$ (-3.0) $f(x) = (x-1)^2 - 2$ $f(x) = x^2 - 2x - 15$ $f(x) = 6 - 4x + x^2$ domain: $(-\infty,\infty)$ domain: $(-\infty,\infty)$ domain: $(-\infty,\infty)$ range: $[-16,\infty)$ range: $[-2,\infty)$ range: $[2,\infty)$

(b)

Revised: Spring 2017

PRECALCULUS PROBLEM SESSION #4 SOLUTIONS

- 4. a) a = -2. The parabola opens downward and has a maximum value.
 - b) The maximum is 21 at x = -3.
 - c) Domain = $(-\infty, \infty)$, Range = $(-\infty, 21]$
- 5. Because if a = 0 then the function is linear.
- 6. Their graphs are symmetric with respect to the *y*-axis, have the same orientation, that is, they both either open downward or upward, and they have exactly the same shape (one is just a translation of the other).
- 7. a) The two numbers whose difference is 24 and whose product is minimized are 12 and -12. The minimum product is -144.
 - b) The two numbers whose sum is 20 and whose product is maximized are 10 and 10. The maximum product is 100.

8. a)
$$y = -(x+2)^2 + 3$$

b)
$$y = (x+1)^2 - 1$$

- 9. a) The maximum height reached by the baseball after 2 seconds is 67 feet.
 - b) The baseball reaches the ground after approximately 4.05 seconds.
- 10. The dimensions of the rectangular region with maximum area is 20 yards by 20 yards. This gives an area of 20 yards by 20 yards. This gives an area of $20 \cdot 20 = 400$ square yards.

11. (a)
$$A(x) = (50 - x)x = 50x - x^2$$

(b)
$$0 < x < 50$$

(d) Maximum area achieved when the dimensions are 25 feet by 25 feet

(e)
$$B(x) = (100 - 2x)x = 100x - 2x^2, 0 < x < 50$$

PRECALCULUS PROBLEM SESSION #4 SOLUTIONS

Maximum area achieved when the dimensions are 25 feet by 50 feet

12. The dimensions of the playground that maximize the total enclosed area is $\frac{200}{3} \times 100$