PRECALCULUS PROBLEM SESSION \#5 SOLUTIONS

Polynomial Functions and Their Graphs

1.

a) Yes, degree 2
b) No
c) Yes, degree 1
d) No
e) Yes, degree 4
f) No
2.
a)

Since $a_{n}>0$ and n is even, $f(x)$ rises to the left and the right.
x-intercepts $=(a, 0)=(0,0),(-1,0),(1,0)$
y-intercept $=(0, b)=(0,0)$
The graph has y-axis symmetry.

Since $a_{n}<0$ and n is even, $f(x)$ falls to the left and the right.
x-intercepts: $\{(-5,0),(4,0),(5,0)\}$
y-intercept $=(0, b)=(0,800)$
The graph has neither y-axis symmetry nor origin symmetry.
3. a) Approaches infinity, resembles $y=16 x^{3}$
b) Approaches infinity, resembles $y=4 x^{4}$
c) Approaches infinity, resembles $y=2 x^{9}$
d) Approaches infinity, resembles $y=5 x^{\frac{1}{2}}=5 \sqrt{x}$
4. a) $\quad f(2)=-8$ and $f(3)=81$. Thus this sign change in $f(x)$ shows there is a zero between the given values by the Intermediated Value Theorem (IVT).
b) $\quad f(0)=2$ and $f(1)=-1$. Thus this sign change in $f(x)$ shows there is a zero between the given values by the Intermediated Value Theorem (IVT).

PRECALCULUS PROBLEM SESSION \#5 SOLUTIONS

5. Zeros: $x=-5$ has multiplicity 1 ; the graph crosses the x-axis at $(-5,0)$. $x=-2$ has multiplicity 2 ; the graph touches the x-axis and turns around at $(-2,0)$.

Since $a_{n}>0$ and n is odd, $f(x)$ falls to the left and rises to the right.
x-intercepts: $\{(-5,0),(-2,0)\}$
y-intercept $=(0, b)=(0,40)$
The graph has neither y-axis symmetry nor origin symmetry.
Some other points on the graph of $f(x)$ are:
$(-8,-216),(-7,-100),(-6,-32),(-5,0)$,
$(-4,8),(-3,4),(-2,0),(-1,8),(0,40)$,
$(1,108),(2,224),(3,400)$
The maximum number of turning points is 2 .
6. The graph of $P(x)$ at a real zero of odd multiplicity crosses the x-axis, while the graph of $P(x)$ at a real zero of even multiplicity touches the x-axis and turns around, that is, it has a turning point at the x-intercept.
7. a) Not a polynomial function because graph is not smooth.
b) Polynomial function
8.

Dividing Polynomials

1. It tells you that the divisor is a factor of the original polynomial, and the quotient is what is left if the divisor is factored out.
2. Yes, otherwise we could continue the long division.

PRECALCULUS PROBLEM SESSION \#5 SOLUTIONS

3. The division could not continue.
4.

a) $x^{2}+x-2$
b) $3 x+7+(26 /(x-3))$
c) $x^{3}+3 x^{2}+9 x+27$
d) $x^{2}-4 x+1+\left((4 x-1) /\left(2 x^{3}+1\right)\right)$
5. a) $5 x^{2}+4 x+11+33 /(x-2)$
b) $x+2$
6. $f(3)=-27$
7. The solution set is $\{-2,1 / 2,3\}$
8. 2

