Chapter \#7 Giancoli 6th edition Problem Solutions

- Problem \#8

QUESTION: A 9300 kg boxcar traveling at $15.0 \mathrm{~m} / \mathrm{s}$ strikes a second boxcar at rest. The two stick together and move off with a speed of $6.0 \mathrm{~m} / \mathrm{s}$. What is the mass of the second car?
ANSWER:

Momentum is conserved since there is no external force acting on the system of two boxcars in the horizontal direction. (There is an external force (gravity) in the y-direction but there is no motion in the y direction.) Momentum is NOT conserved for each boxcar separately. The two boxcars stick together and this usually means energy is NOT conserved or at least cannot be assumed to be conserved.

The initial momentum is $\mathrm{p}_{0}=9300 \mathrm{~kg} \times 15 \mathrm{~m} / \mathrm{s}$ and the final momentum is $\mathrm{p}_{f}=(9300 \mathrm{~kg}+M) \times 6 \mathrm{~m} / \mathrm{s}$ if we knew the mass M of the second boxcar. Conservation of momentum means $\mathrm{p}_{0}=\mathrm{p}_{f}$ that is

$$
\begin{aligned}
& 9300 \mathrm{~kg} \times 15 \mathrm{~m} / \mathrm{s}=(9300 \mathrm{~kg}+\mathrm{M}) \times 6 \mathrm{~m} / \mathrm{s} \\
& 139500 \mathrm{~kg}-\mathrm{m} / \mathrm{s}=55800 \mathrm{~kg}-\mathrm{m} / \mathrm{s}+\mathrm{M} \times 6 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$\mathrm{M}=13,950 \mathrm{~kg}$.
9300 * 15
139500
930086
9300 * 6
55800
(139500-55 800) / 6.
13950 .

- Problem \#12:

QUESTION: A 23-gm ($=0.023 \mathrm{~kg}$) bullet traveling $230 \mathrm{~m} / \mathrm{s}$ penetrates at 2.0 kg block of wood and emerges cleanly at $170 \mathrm{~m} / \mathrm{s}$ If the block is stationary on a frictionless surface when hit, how fast does it move after the bullet emerges?
ANSWER:

Momentum is conserved for the system of the bullet and 2.0 kg block since there is no external force acting on the system in the horizontal direction. (Gravity is an external force which acts in the vertical direction but there is no motion in the vertical direction.) Momentum is not conserved for the bullet separately or the block of wood separately.

The initial momentum of the system (bullet plus block) is $\mathrm{p}_{0}=0.023 \mathrm{~kg} \times 230 \mathrm{~m} / \mathrm{s}=5.29 \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
0.023 * 230
5.29

The final momentum of the system $\mathrm{p}_{f}=0.023 \mathrm{~kg} \times 170 \mathrm{~m} / \mathrm{s}+2.0 \mathrm{~kg} \times V_{f}=3.91 \mathrm{~kg}-\mathrm{m} / \mathrm{s}+2 \mathrm{~kg} \times V_{f}$
170 * 0.023
3.91

Assuming conservation of momentum $\mathrm{p}_{0}=\mathrm{p}_{\mathrm{f}}$ means that $5.29 \mathrm{~kg}-\mathrm{m} / \mathrm{s}=3.91 \mathrm{~kg}-\mathrm{m} / \mathrm{s}+2 \mathrm{~kg} \times V_{f}$ Solving for V_{f} yields

$$
V_{f}=\frac{5.29 \mathrm{~kg}-\mathrm{m} / \mathrm{s}-3.91 \mathrm{~kg}-m / \mathrm{s}}{2 \mathrm{~kg}}=0.69 \mathrm{~m} / \mathrm{s}
$$

5.29-3.91
2.0
0.69

- Problem \#16

QUESTION: A 12 kg hammer strikes a nail at a velocity of $8.5 \mathrm{~m} / \mathrm{s}$ and comes to rest in a time interval of 8.0 sec .
(a) What is the impulse given to the nail?
(b) What is the average force acting on the nail?

ANSWER: The change in momentum of the hammer is $\Delta \mathrm{p}=p_{f}-p_{0}$ where the final momentum of the hammer is zero $p_{f}=0$ since the hammer comes to rest. The initial momentum of the hammer is $p_{0}=12 \mathrm{~kg} \times 8.5 \mathrm{~m} / \mathrm{s}=102 \mathrm{~kg}-\mathrm{m} / \mathrm{s}$. So the change in momentum of the hammer is $\Delta \mathrm{p}=p_{f}-p_{0}=(0-102 \mathrm{~kg}-\mathrm{m} / \mathrm{s})=-102 \mathrm{~kg}-\mathrm{m} / \mathrm{s}$. (The positive x direction is in the direction of the motion of the hammer so the initial velocity of the hammer $8.5 \mathrm{~m} / \mathrm{s}$ is positive.) The change in momentum of the hammer equals the impulse due to the nail on the hammer which by Newton's 2 nd law

$$
\text { impulse of the nail on the hammer }=\mathrm{F} \Delta \mathrm{t}=\Delta \mathrm{p}=-102 \mathrm{Nt}-\mathrm{sec}
$$

where F is the average force of the nail on the hammer and $\Delta \mathrm{t}=8.0 \mathrm{msec}$. ($\mathrm{msec}=10^{-3} \mathrm{sec}$.) It is the force of the nail on
the hammer that changes the momentum of the hammer. (The impulse of the hammer on the nail is equal in size to this but opposite in direction due to Newton's 3rd law and because the time of contact $\Delta \mathrm{t}$ is the same for the hammer and the nail.) So the average force of the nail on the hammer F is

$$
F=\frac{\Delta \mathrm{p}}{\Delta \mathrm{t}}=\frac{-102 \mathrm{~kg}-\mathrm{m} / \mathrm{s}}{8.0 \times 10^{-3} \mathrm{~s}}=-12,750 \mathrm{Nt} .
$$

By Newton's 3rd law, the force of the hammer on the nail is equal in size and opposite in direction to F so the force of the hammer on the nail is $+12,750 \mathrm{Nt}$. and this is in the positive x direction as expected.
12 * 8.5
102.
102. / . 008 .

12750

- Problem \#24

QUESTION: Two billiard balls of equal mass undergo a perfectly elastic head-on collision. If one ball's initial speed was $2.0 \mathrm{~m} / \mathrm{s}$ and the other's was $3.0 \mathrm{~m} / \mathrm{s}$ in the opposite direction, what will be their speeds after the collision?
ANSWER:

Va is the velocity of the ball on the right after the collision and Vb is the velocity of the ball on the left after the collision. Assuming momentum is conserved

$$
\mathrm{M} \times 2 \mathrm{~m} / \mathrm{s}+\mathrm{M} \times(-3 \mathrm{~m} / \mathrm{s})=\mathrm{M} \times(-\mathrm{Vb})+\mathrm{M} \times \mathrm{Va}
$$

and after cancellation of M's we get

$$
2-3=-\mathrm{Vb}+\mathrm{Va} \text { or }-1=-\mathrm{Vb}+\mathrm{Va}=\mathrm{Vb}-1(\text { Equation \#1) }
$$

The positive x direction is to the right and it is assumed the velocity of the ball on the right is positive after the collision so Va is positive and the ball on the left is assumed moving to the left with negative velocity $(-\mathrm{Vb})$ after the collision since $\mathrm{Vb}>0$. If these assumptions are incorrect, in the process of solving the problem Va and/or Vb may turn out to be negative and that will tell us our assumption(s) is/are incorrect and the balls are actually moving in the reverse directions after the collision.

Assuming energy is conserved we get

$$
\frac{1}{2} M \times(2 m / s)^{2}+\frac{1}{2} M \times(-3 m / s)^{2}=\frac{1}{2} M \times(-\mathrm{Vb})^{2}+\frac{1}{2} M \times \mathrm{Va}^{2}
$$

and after cancellation of Ms and $1 / 2$ we get

$$
4+9=\mathrm{Vb}^{2}+\mathrm{Va}^{2} \quad \text { or } \quad 13=\mathrm{Vb}^{2}+\mathrm{Va}^{2} \quad(\text { Equation \#2) }
$$

Equations \#1 and \#2 have two unknowns which we solve for by first writing equation \#1 as $\mathrm{Va}=\mathrm{Vb}-1$ and using this to eliminate Va in equation \#2 obtaining

$$
13=(\mathrm{Vb}-1)^{2}+\mathrm{Vb}^{2} \text { or } 2 \mathrm{Vb}^{2}-2 \mathrm{Vb}-12=0
$$

This is a quadratic equation for Vb which is easily solved to get

$$
\mathrm{Vb}=\frac{2 \pm \sqrt{4+4 * 2 * 12}}{2 * 2}
$$

Using Mathematica to check the results above:
Solve $[\{2 * X * X-2 * X-12=0\},\{X\}]$
$\{\{X \rightarrow-2\},\{X \rightarrow 3\}\}$
So there are two possible solution for Vb :
1st solution is $\mathrm{Vb}=-2 \mathrm{~m} / \mathrm{s}$ and returning to $\mathrm{Va}=\mathrm{Vb}-1$ we get $\mathrm{Va}=-3 \mathrm{~m} / \mathrm{s}$.
Since both Va and Vb are minus it means we guessed wrong about the directions after the collisions. More importantly, this result says the particle b on the left passes through the particle a on the right and particle b has it's velocity unchanged. (and similarly for particle a). This is not possible physically so we reject this solution.

2nd solution is $\mathrm{Vb}=3 \mathrm{~m} / \mathrm{s}$ and returning to $\mathrm{Va}=\mathrm{Vb}-1$ we get $\mathrm{Va}=2 \mathrm{~m} / \mathrm{s}$.
Since both Va and Vb are positive we know we guessed right as to their directions. The 1st solution means that after the collision particle a has the same velocity it started with and the same for particle b. The only way this could happen is if the particles pass through each other but this is not physically possible. So the 1 st solution is ruled out on physical grounds.

As a check Mathematica can be used to solve the two equations:

```
Solve[\{2-3 == - vb + va, \(\left.\left.13=\mathrm{vb}^{2}+\mathrm{va}^{2}\right\},\{\mathrm{Va}, \mathrm{vb}\}\right]\)
\(\{\{\mathrm{Va} \rightarrow-3, \mathrm{Vb} \rightarrow-2\},\{\mathrm{Va} \rightarrow 2, \mathrm{Vb} \rightarrow 3\}\}\)
```

- Problem \#35

QUESTION: A m=920 kg sports car collides into the rear end of a $\mathrm{M}=2300 \mathrm{~kg}$ SUV stopped at a red light. The bumpers lock, the brakes are locked, and the two cars skid forward 2.8 m before stopping. The police officer, knowing that the coefficient of kinetic friction between tires and road is 0.80 calculates the speed of the sports car at impact. What was that speed?

ANSWER: The physical problem is similar to problem \#12 above and we use the same diagram except the masses are different and the initial speed V_{0} of the sports car is not known in problem \#35.

Before Collision

After Collision

Momentum is conserved since there is no external force acting on the system (the sports car plus SUV) in the horizontal direction. (There is an external force (gravity) in the y-direction but there is no motion in the y direction.) Momentum is NOT conserved for the sports car and SUV separately. The sports car and SUV stick together and this usually means energy is NOT conserved or at least cannot be assumed conserved. The kinetic energy lost winds up as heat energy so energy is still conserved just kinetic energy of the center of mass is NOT.

The initial momentum is $p_{0}=m V_{0}=920 \mathrm{~kg} \times V_{0}$ and the final momentum is $\mathrm{p}_{f}=(m+M) \times V_{f}=(920 \mathrm{~kg}+2300 \mathrm{~kg}) \times \mathrm{V}_{\mathrm{f}}$. Conservation of momentum means $\mathrm{p}_{0}=\mathrm{p}_{f}$ so in this case, this means

$$
\begin{aligned}
& 920 \mathrm{~kg} \times V_{0}=(920 \mathrm{~kg}+2300 \mathrm{~kg}) \times V_{f} \\
& V_{0}=3.5 V_{f}
\end{aligned}
$$

$920+2300$

920.

3.5

So if we knew the final velocity V_{f} of the sports car plus SUV right after the collision, then we would find the initial speed of the sports car V_{0}. The sports car plus SUV system travels a distance $\mathrm{X}=2.8 \mathrm{~m}$ before stopping. Assume the initial kinetic energy of the sports car plus SUV equals the work done against friction $\mu \mathrm{Nx}$ where $\mathrm{N}=(\mathrm{m}+\mathrm{M}) \mathrm{g}$ is the normal force of the sports car plus SUV system and $\mu=0.80$ is the coefficient of friction. Thus

$$
\frac{1}{2}(m+M) \times V_{f}^{2}=\mu(m+M) \mathrm{gx}
$$

The mass $(\mathrm{m}+\mathrm{M})$ cancels in the above equation and we solve for V_{f} obtaining

$$
V_{f}=\sqrt{2 \mu g x}=\sqrt{2 \times 0.80 \times 9.8 \mathrm{~m} / \mathrm{s}^{2} \times 2.8 \mathrm{~m}}=6.63 \mathrm{~m} / \mathrm{s}
$$

$\sqrt{2 * 0.80 * 9.8 * 2.8}$
6.62601

This value of $V_{f}=6.63 \mathrm{~m} / \mathrm{s}$ can now be used to compute V_{0} using the result from conservation of momentum $V_{0}=3.5$
V_{f} so that
$V_{0}=3.5 * 6.63 \mathrm{~m} / \mathrm{s}$
23.205 m
s

- Problem \#46

Calculate the center of mass or COM of the three-mass system shown below. Specify the COM relative the left-hand 1.0 kg mass

$\mathrm{X}=\frac{1.0 \mathrm{~kg} \times 0 \mathrm{~m}+1.5 \mathrm{~kg} \times 0.5 \mathrm{~m}+1.1 \mathrm{~kg} \times 0.75 \mathrm{~m}}{1.0 \mathrm{~kg}+1.5 \mathrm{~kg}+1.1 \mathrm{~kg}}=0.44 \mathrm{~m}$
since using Mathematica to compute the numbers yields
$1 * 0+1.5 * 0.5+1.1 * 0.75$
$1.0+1.5+1.1$
0.4375

- Problem \# 76

Two balls of masses $m_{A}=40 \mathrm{gm}=0.04 \mathrm{~kg}$ and $m_{B}=60 \mathrm{gm}=0.06 \mathrm{~kg}$ are suspended as show in the diagram below. The lighter ball is pulled away to a 60° angle with the vertical and released.
(a) What is the velocity of the lighter ball before impact?
(b) What will be the maximum height of each ball after the elastic collision?

Energy is conserved from the release of mass m_{A} until just before it hits mass m_{B}. So the initial potential energy equals the kinetic energy of m_{A} just before impact when it has a velocity V

$$
m_{A} g h=\frac{1}{2} m_{A} V^{2} \quad \text { or } \quad \mathrm{V}=\sqrt{2 g h}
$$

The height h the mass rises vertically is given by

$$
\mathrm{h}=30 \mathrm{~cm}-30 \mathrm{~cm} \times \operatorname{Cos}\left[60^{\circ}\right]=15 \mathrm{~cm}=0.15 \mathrm{~m}
$$

and using this to compute V yields

$$
\mathrm{V}=\sqrt{2 g h}=1.71 \mathrm{~m} / \mathrm{s}
$$

Using Mathematica to check the calculation
$h=0.30-0.30 * \operatorname{Cos}\left[60^{\circ}\right]$
0.15
g = 9.8;
$\mathrm{v}=\sqrt{2 * \mathrm{~g} * \mathrm{~h}}$
1.71464

Part b: Momentum is conserved when mass m_{A} hits mass m_{B} so we write $\mathrm{p}_{0}=\mathrm{m} \mathrm{V}$ as the initial momentum and $\mathrm{p}_{f}=m_{A} V_{A}+m_{B} V_{B}$ where V_{A} is the velocity of m_{A} after the collision and V_{B} is the velocity of m_{B} after the collision. Conservation of momentum yields

$$
\mathrm{m}_{\mathrm{A}} \mathrm{~V}=\mathrm{m}_{\mathrm{A}} \mathrm{~V}_{\mathrm{A}}+\mathrm{m}_{\mathrm{B}} \mathrm{~V}_{\mathrm{B}}
$$

Using $\mathrm{V}=17.1 \mathrm{~m} / \mathrm{s}$ in equation above together with $m_{A}=40 \mathrm{gm}=0.04 \mathrm{~kg}$ and $m_{B}=60 \mathrm{gm}=0.06 \mathrm{~kg}$ yields

$$
0.04 \mathrm{~kg} \times 1.71 \mathrm{~m} / \mathrm{s}=0.04 \mathrm{~kg} \times \mathrm{V}_{\mathrm{A}}+0.06 \mathrm{~kg} \times \mathrm{V}_{\mathrm{B}}
$$

Simplifying this equation

$$
0.0684=0.04 \times \mathrm{V}_{\mathrm{A}}+0.06 \times \mathrm{V}_{\mathrm{B}} \text { equation } \# 1
$$

Assume kinetic energy K.E. is conserved for the collision process of m_{A} with m_{B} so

$$
\frac{1}{2} \quad \mathrm{~m}_{\mathrm{A}} V^{2}=\frac{1}{2} \mathrm{~m}_{\mathrm{A}} \mathrm{~V}_{\mathrm{A}}^{2}+\frac{1}{2} \mathrm{~m}_{\mathrm{B}} \mathrm{~V}_{\mathrm{B}}^{2}
$$

Utilization of the numerical values for m_{A}, m_{B}, and V in the above equation yields

$$
0.04 \mathrm{~kg} \times(1.71 \mathrm{~m} / \mathrm{s})^{2}=0.04 \mathrm{~kg} \times \mathrm{V}_{\mathrm{A}}^{2}+0.06 \mathrm{~kg} \times \mathrm{V}_{\mathrm{B}}^{2}
$$

or a little more simply

$$
0.118=0.04 \times \mathrm{V}_{\mathrm{A}}^{2}+0.06 \times \mathrm{V}_{\mathrm{B}}^{2} \text { equation \#2 }
$$

Equation \#1 and \#2 have two unknowns V_{A} and V_{B}. First solve equation \#1 for $\mathrm{V}_{\mathrm{A}}=\frac{0.684-0.06 V_{B}}{0.04}$ then use this last equation to eliminate V_{A} in equation \#2 and what results is a quadratic equation for V_{A} which is easily solved. Mathematica can do the work for us:
Solve $\left[\left\{0.068=\mathbf{0 . 0 4} * \mathrm{VA}+\mathbf{0 . 0 6} * \mathrm{VB}, \mathbf{0 . 1 1 8}=\mathbf{0 . 0 4} * \mathrm{VA}^{2}+\mathbf{0 . 0 6} * \mathrm{VB}^{2}\right\},\{\mathrm{VA}, \mathrm{VB}\}\right]$
$\{\{\mathrm{VA} \rightarrow-0.357497, \mathrm{VB} \rightarrow 1.37166\},\{\mathrm{VA} \rightarrow 1.7175, \mathrm{VB} \rightarrow-0.0116647\}\}$
The first solution $\mathrm{VA}=-0.36 \mathrm{~m} / \mathrm{s}$ and $\mathrm{VB}=1.37 \mathrm{~m} / \mathrm{s}$ is the valid solution. The second solution makes no physical sense since it says mass m_{A} passes through mass m_{B} and m_{A} continues on with the same velocity it had before the collision that is, $1.71 \mathrm{~m} / \mathrm{s}$ and mass m_{B} remains at rest $(0.01 \mathrm{~m} / \mathrm{s}$ is zero in comparison with $1.71 \mathrm{~m} / \mathrm{s})$ throughout. Mass A will rise up a distance $\mathrm{hA}=.0066 \mathrm{~m}$ determined from conservation of energy $\frac{1}{2} \mathrm{~m}_{A} \mathrm{~V}_{A}{ }^{2}=\mathrm{m}_{A} g h_{A}$ which after cancellation yields $h_{A}=\frac{\mathrm{V}_{A}{ }^{2}}{2 g}=0.0066 \mathrm{~m}$ and something similar for mass B , that is, $\mathrm{hB}=0.096 \mathrm{~m}$. Mathematica gives for the two heights
$\mathrm{g}=\mathbf{9 . 8}$;
$h A=\frac{0.36^{2}}{2 * g}$
0.00661224
$\mathrm{hB}=\frac{1.37^{2}}{2 * \mathrm{~g}}$
0.0957602

