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Optimal unambiguous filtering of a quantum state: An instance in mixed state discrimination
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Deterministic discrimination of nonorthogonal states is forbidden by quantum measurement theory. How-
ever, if we do not want to succeed all the time, i.e., allow for inconclusive outcomes to occur, then unambigu-
ous discrimination becomes possible with a certain probability of success. A variant of the problem is set
discrimination: the states are grouped in sets and we want to determine to which particular set a given pure
input state belongs. We consider here the simplest case, termed quantum state filtering, wkeagivire
nonorthogonal statef$y,), ... ,|#n)} are divided into two sets and the first set consists of one state only while
the second consists of all of the remaining states. We present the derivation of the optimal measurement
strategy, in terms of a generalized measurentpasitive-operator-valued measyréo distinguish|i,) from
the sef{|y»), ... ,|#n)} and the corresponding optimal success and failure probabilities. The results, but not the
complete derivation, were presented previolBligys. Rev. Lett90, 25901(2003] as the emphasis there was
on appplication of the results to probabilistic quantum algorithms. We also show that the problem is equivalent
to the discrimination of a pure state and an arbitrary mixed state.
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I. INTRODUCTION One possible criterion is that no error is permitted, i.e., the

In quantum information and quantum computing the car-States have to be discriminated unambiguously. Quantum
rier of information is a quantum system and information isMeéasurement theory tells us that it is impossible to unam-
encoded in its state. In the simplest case the system lives injguously discriminate between nonorthogonal quantum
two-dimensional Hilbert space and the two basis vectors arétates with unit probability of success so we have to settle for
conveniently asssociated with the logical 0 and 1. Such &ss. If we do not require that we succeed every time, then
two-level system is called a qubit. However, it is not neces-unambiguous discrimination becomes possible. When the at-
sary to restrict our attention to qubite:dimensional sys- tempt fails, an inconclusive answer is returned. The optimal
tems, or qudits, can also be used to store quantum informsstrategy is the one that minimizes the average probability of
tion. Reading out the information from the quantum systenfailure. Interest in unambiguous state discrimination was re-
is tantamount to identifying the state it is in where the statenewed by the suggestion to use nonorthogonal quantum
itself might be the output of a quantum channel or the resulstates in certain secure quantum cryptographic protocols, in
of a quantum computation. order to establish a secure key. A particularly clear example,

We want to find the optimum measurement that extractased on a two-state procedure, was developed by Bennett
information about the state. This problem is different from[2].
the usual textbook measurement as no ensemble averaging isIn most of the previous work discrimination among all
involved nor are we interested in the average value of somgembers of a set of states was considered. Subsequently, we
physical observable. Every time a system reaches the fin&lirned our attention to the following variant of the problem.
step we want to determine its state. Since the state of a sy#astead of discriminating among all states, we ask what hap-
tem is not an observable in quantum mechanics, this sound®ens if we just want to discriminate between subsets of them.
at first as if it is an impossible task. There are ways around itin this class of problems we know that a given system is
however. Quantum processors are designed in such a wayepared in one oN known nonorthogonal quantum states,
that their output is a member of a setlafownstates, so we but we do not know which one. We want to assign the state
are facing the more modest problem of determining which off this system to one or the other of two complementary
these states was realized. If the possible target states asgbsets of the set of thé given states where one subset has
mutually orthogonal this is an easy task: we just set up deM elements and the other hds-M (M<N/2). Since the
tectors along the corresponding orthogonal directions and desubsets are not mutually orthogonal, the assignment cannot
termine which one click§assuming perfect detectors, of be done with a 100% probability of success. For the case that
course. However, if the target states are not mutually or-the assignment is to be performed with minimum error, the
thogonal the problem is still difficult and optimization with solution has been found for arbitraiy and N under the
respect to some reasonable criteria leads, in general, testriction that the Hilbert space spanned by the states is two
highly nontrivial measurement strategies. Finding the opti-dimensiona[3]. For the case that the assignment is required
mal measurement strategy is the subject of state discriminde be unambiguous, at the expense of allowing inconclusive
tion. An overview of the state-of-the-art in the area of stateresults to occur, the probability of which is minimized, the
discrimination can be found, for example, in our recent reproblem has been solved fit=1, N=3 in Ref.[4]. We refer
view [1] so here we just recall the immediate preliminaries.to either case as quantum state filtering, a term that we
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coined in Ref[3], whenM=1 andN= 3. The solution pre- Q= s 70 (2.1)
sented in Ref[4] can be generalized in a straightforward o
manner to arbitraryN. In our recent work we presented the
exact analytical solution, but not its derivation, of the unam-respectively. Our objective is to find the seg} that mini-
biguous quantum state filtering problem—the caséMafl  mizes the average probability of failu@ or, equivalently,
and N arbitrary, with no restriction on the states—and em-the se{p;} that maximizes the average probability of success
ployed it to develop a quantum algorithi]. P.
In this paper we fill in the gaps and derive the solution  The procedure we shall use is a so-called “generalized
that we used in Ref{5]. The paper is organized as follows. measurement,” based on POV{g. Using Neumark’s theo-
In Sec. II, based on simple but rigorous arguments, we deriveem, a POVM can be implemented in the following way.
the main analytical solution to the optimal positive-operator-we first embed the system in a larger Hilbert spAceon-
vaIue’d measurementPOVM) problem. It invokes Neu- sisting of the original system spa@¢ and an auxiliary Hil-
mark’s theorem in order to develop a physical implementapert space called the ancilld. We takeK to be a tensor
tion of a generalized measurement. In Sec. lll, we Investigatgroduct C=H ®.A. Then we introduce an interaction be-
the region of validity of the POVM solution and show that tween the system and ancilla corresponding to a unitary evo-
outside this region standard von Neumann projective megytion on this larger space. The unitary evolution entangles
surements can be used to perform optimal unambiguous dighe system degrees of freedom with those of the ancilla. Fi-
crimination. In Sec. IV, we connect the problem of quantumnally, a projective measurement is performed on the extra
state filtering to the unambiguous discrimination of m'Xeddegrees of freedom. Due to the entanglement, a click in the
quantum states and show that our solution can be viewed gfcilla detectors will also transform the state of the original
the discrimination of a pure state and an arbitrary mixedsystem in a general way. We choose this resulting transfor-
state. In Sec. V we give an alternative derivation of the opmation of the system states to be the most appropriate for our
timal measurement which is based on considering the geonfiitering purposes.
etry of the Hilbert space, and it is closer in spirit to the |n order to accomodatl states the dimension of the sys-
standard approach to POVMs. Of course, the results argm spacé, d, need be no more thaw, i.e.,d< N. Equality
identical to those of the previous sections. A brief discussiotholds when all of the vectors);) are linearly independent.
of recent experimental progress and conclusions are given ¥ye will use N as the dimensionality of in the following
Sec. VI. treatment. The dimension of the ancillais a key point in
obtaining the optimal solution and we will consider it next.
Il. DERIVATION OF THE OPTIMAL POVM . .
The input state of the system is one of the vectars,

Suppose we are given a quantum system prepared in thghich is now a vector in the subspakgof the total spacé,
state|«), which is guaranteed to be a member of the set of so that

known nonorthogonal statdl/,),|i), ... ,|#)}, but we do

not know which one. We denote by the a priori probabil- |0 = [ 3, (2.2

ity that the system was prepared in the stadie We want to A o )

find a procedure that will unambiguously assign the state ofvhere|¢y) is the initial state of the ancillésame for all

the quantum system to one or the other of two complemen“?pUtQ- Following the general pro_cedure outlined in the pre-
tary subsets of the set of tiegiven nonorthogonal quantum Vious paragraph for the generalized measurement we now
states, eithef{y;)} or i), ... ,|¢a)}. For unambiguous dis- @PPly @ unitary transformatioty that entangles the system
crimination the procedure has to be error free, i.e., it may faijvith the ancilla degrees of freedom. As a result, the input
to give us any information about the state, and if it fails, it VEctor transforms into the state/")o,. This state can be
must let us know that it has, but if it succeeds, it should€XPanded using a bas{imf‘)}' for A. For the purposes of
never give us a wrong answer. Clearly, this is a variant of th@Ptimum unambiguous discrimination between the two sets,
unambiguous state discrimination problem, and we shall re€ want three different outcomes when a projective mea-
fer to such a procedure as quantum state filtering withougurement is performed on the ancilla: one that tells us that

error. We find that, in contrast to the unambiguous state disth€ input was a state from the first set, one that tells us that it
crimination problem, this will be possible even|if,) is not ~ Was from the second set, and one that tells us that the dis-

linearly independent from the sgt/s)., ....|yn)}- crimination failed. Thus, we require the ancilla to be three-

According to the quantum theory of measurement, théimensionakk=1,2,3, as explained below, yielding
states cannot be discriminated perfectly if they are not mu- , ,
tually orthogonal. Thus, if we are givelgs;), we will have [ )ou= Ul hn = 8.y my) + (1= & 0l "))
some probabilityp; to correctly assign it to one of the subsets + [yt ") mg). (2.3
and, correspondingly, some failure probabildgy=1-p; to
obtain an inconclusive answer. The average probabilities ofh the following we drop the upper inde and A if it does
success? and failureQ=1-P to correctly assign the states not lead to confusion. We also note that the stwgé@‘) and
), i=1,... N are ™"y are not normalized. From the construction of the out-
N put state we see that the first outcome is compatible with the
P=> 7P; first input, the second with an input state from the second set
i and the third outcome is compatible with both inputs. We
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might want to require thafy;) be distinguishable from that|¢) (i=1,... N) are collinear, i.e., the failure space, a

[y, ... .|y, yielding the condition subspace of{, is one dimensional. Ifiyy) is the basis vector
o spanning this Hilbert space then, taking Eg.6) into ac-
Wle »=0 (2.4 count, we can write the failure vectors as
forj=2,... N (in generalj runs from 1 toN andj from 2 to Y —
N). Strictly speaking, though, this condition is only conve- |4 = e o), (2.9

nient but not necessary. . wherey; is the phase ofi//'). Substituting this representation
Now, a state selective measurement is performed on thgf the failure vectors in E2.8) gives

ancilla that project$y/),, onto one of the basis vectojrs,)
(i=1,2,3. If it projects|¢{")o.; Onto|my) or Ir_n2>, the proce- (i) = \,quei(xj-xl)’ (2.10
dure succeeds, because we can unambiguously assign the

input to one or the other set. The probability to get thiswhich determines the phases fer2, ... N.

outcome, if the input state ig), is Taking the magnitude of Eq2.10), yields

pi = ). (2.5 aud = K2 (> ). (2.11)

If the measurement prolec|t$i’c)outonto|m3>, the procedure TheseN-1 conditions are a consequence of unitarity and
fails bgcause it conditionally transform; al! input SyStemimply that only one of theN failure probabilities can be
states into the output that cannot be distinguished. The proQ:’nosen independently. If we chogeas the independent one
ability of this outcome, if the input state |g;), is '

we can express the others as=|(yn|y))|*/q;. Let Oy
ai =), (2.6) E((Ml,b]-} then the average failure probabili@:EiNniqi can

_ L be written explicitly as
From the unitarity of the transformation in E.3) the re- PIcty

[ N
lation 2;:2 77j|011|2
pi+gi=1 (2.7 Q=m0 + T w (2.12
1
immediately follows, by taking the scalar product of the two

sides with their adjoints. From the condition for minimum

The nature of the problem we are trying to solve imposes dQ
a number of other constraints and requirements on the output — =0, (2.13
vectors. Let us first consider the set of system states associ- do,

ated with a click in thgmg) detector{|/')}, which we also

' ) X we now find the optimal value df; as
call failure vectors. If they were linearly independent, we

could apply a further state discrimination procedure to them EN 0.2

; ‘o Airantinn ; i=o 7Oy
[8], contrary to our assumption that this direction is associ- Q.= j (2.14
ated with an inconclusive outcome. Therefore, the optimal ! m ' '

procedure should lead to failure vectors to which we cannot ) ) ) ) )

successfully apply a state discrimination procedure, implyingnserting this value into Eq2.12) finally gives

that they are linearly dependent. In fact, more is true and it is

easy to show that they must be collinear by demonstrating _

that the contrary leads to contradiction. To this end, let us Qeovm=2 % 7Oy (2.19

assume that the failure vectors a@t collinear. Then at least .

one of the the failure vectoﬂﬂ/j’) will have a component in  This result represents the absolute optimum for the measure-

the direction that is perpendicular[tgf) in . We can setup ment problem at hand. In the following we will investigate

a detector in the system Hilbert space projecting onto thists range of validity and derive the complete solution that is

direction and a click of the detector will tell us that our input valid for all values of the parameters.

state was notyy) but one of the otheN-1 states. Thus,

contrary to our assumption that the third dimension of the

ancilla is associated with the inconclusive outcome, further

discrimination is possible. Hence, the failure vectors must be

collinear. The value given in Eq(2.15 for the minimum probabil-

Next, we take the scalar product betwep#{ )o, and ity of failure cannot always be realized. For it to be true,
|4 dour Using Eq.(2.3) and the fact thatl is unitary lead to  there has to exist a unitary transformation that tae, to
the conditions [dout IN EQ. (2.3). One of the consequences of unitarity is
o — : the conservation of norm which is expressed by Egs.

W) =gl (>1). (2.9 (2.5—2.7). Another consequence is the conservation of the

Our objective is to find the optimal);) and|y4) which sat-  scalar product which we only partially used in EQ.8).

isfy Egs.(2.5—(2.8) and maximize the success probabilty ~ Taking the scalar product &f)o With |¢i)oy from Eq.(2.3)

We shall now explore the consequences of the conclusioteads to the generalization of E®.8)

N

[ll. LIMITATIONS OF THE POVM AND THE COMPLETE
SOLUTION
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(Wl = (W | + g . (3.1 tion onto the orthogonal subspacef;. Thus,M” is posi-

tive semidefinite ifg; = (/4| ). Whena, =(/4| ), the fail-
Obviously,k=1 andl=j>2 reproduces Ed2.9) as a special ;e probability is ! 1l 1=l

case since, according to Eq2.4), (¢i|z//j’>:0 for j

=2,... N. These equations imply that - 2;\':2 7;|0y?
p - = 3.9
Wl = Wl —age . (3.2 Q= Sl + = s 59

This set of equations can only be true if the maivixwhere  This is the same failure probability that is obtained by pro-
jecting each quantum system we are given ddfo

- — Jaa.e )

Muc= (il — Vo X 3.3 Combining the conditions for the positivity df1* and

is positive semidefinite, as discussed in detail in Re}. M#, we find that the POVM solution is valid if
The matrixM .= (i | 1) has the structure
k= [ (Wl <ag <1. (3.10
V= (Ma 0 ) (3.4 In view of Eq.(2.1] this condition ensures that all failure
0 MF probabilities will be bounded by similar inequalities

whereM“=M;,=1-q, and all other elements in the first row TATARS q =<1, (3.11)
and first column are zero because of the conditidd), and e
MB=M;, for j,j'=2,... N. where we introduced the notatig@)=P,|y;) for the com-

Thus, one of the positivity conditions =<1 from the ~ Ponent of any state from the second seHp. .
positivity of M. If g;=1, then the average failure probabil-  The boundaries for the validity of the POVM solution
ity, which we denote byQ,, becomes (3.10 [or Eq.(3.11)], can be expressed in terms of the inde-
pendent parameters of the problem. Ehpriori probability

_ 2 that the input state is from the set is ,= 7, and thea
Qu=m+ J% 7l04%, 3.9 priori probability that it is from theg set is 7z=1-7,(=1
—71). Next, we introduce the renormalizesd priori prob-

which follows from Eq.(2.12) with g,;=1. Note that this is abilities, 7/ = 7,/ 75, for j > 1. In terms of these renormalized
the same average probability that we would obtain if wequantities we can writg; for the optimal POVM, Eq(2.14),

N

projected the state of the system we were given ¢ith as
In order to evaluate the positivity condition fo1? we
first express the second term on the right-hand side of Eq. 1- 771)2!\':2 77j'|011|2
(3.9 as gy = : . (3.12
— UIATAD "
\,qjqj,ei(xk‘)ﬂ) = #, (3.6)  Substitution into Eq(3.10 yields upper and lower bounds
A1 for the a priori probability of the state to be filtered,
where we multiplied Eq(2.10 with its conjugate foij’. This S S
allows us to write —s=ps—3, (3.13
)l sei T stk
1

N

At this point, it is convenient to introduce the following no- s=> 77',|Olj|2 (3.14
2. 7 . .
J:

tation. We call{|¢y)} the a set and{|¢;)|j>1} the B set.

Define to be the one-dimensional space that is the span . L .

of [iy) gﬁdHB to be the span 0’J|lﬁ‘>|j=g NY. In addi- P Within these bounds the POVM solution is valid.

. ' . ] e . Summarizing Egs(2.15), (3.5), and(3.9) and taking Eq.
tion, let P, be the projection ontt,, andPy be the projec- f (3.13 into account, we can write the optimal solution as

tion ontoH . This gives us two different decompositions o p
the system Hilbert spacé,=P,+P,=Pgz+P, where the i S _ . _ S
overbar stands for projection onto the orthogonal comple- Qeovm 1+ M~ gy [ 2
ment. Then we can write, fgr, j’>1, S
opt — ; ==
M. = (0P ~ (5| P gl )| Pyl 1) Q=1 Qu ity <7 1+S
iir = GlPgly ) a0 S
Q it m>m= e
_ (Al g Ys+
=\ Pe-—— ||%/ (3.9 .
o1 (3.19

where |<ﬂ‘l>:Pﬁ|4,//1> is the component ofyy) in Hg. This  representing our main result. In the intermediate rangs; of
leads to a further decomposition of tf¢; subspaceP; the optimal failure probabilityfQpoyy is achieved by a gen-
=Py+P;, wherePy=[y4)(y4| /(4] 1) andP; is the projec-  eralized measurement or POVM. Outside this region, the op-
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timal failure probabilitiesQ, andQg are realized by standard Qu=1a+ 13 Tr(papp)
von Neumann measurements, corresponding to two different =+ 75S= 7 TP P.) + 7 TH(P.paP.)
orthogonal decompositions @f. For 7, < 7, 1;=P,+P,. A ™ 1=~ T 1R aPala) ™ 1 TAT 0Pl

click of the P, detector corresponds to failure because it can (4.3

have its origin in either of the two subsets and a click in therhe |ast expression, although superfluous, makes it explicit
orthogonal directions uniquely assigns the input state to thgyat in this case the measurement is a von Neumann projec-
B set. Foryp,> 7, IH=P%+ PL+PB. A click of the P% detec- tion on the one-dimensional subspdte.

tor corresponds to failure because it can have its origin in  Similarly, we can expres®; in terms of the density ma-
either of the two subsets, a click of tiRy detector uniquely ~ trices andPj, as

assigns the input state to the set and a click of thePé

detector uniquely assigns the input state to gheet. At the Qp= n. Al + ”Bw
boundaries of their respective regions of validity, the optimal WlWﬁ
measurements transform into one another continuously. In its S
range of validity the POVM performs better than either one = na{Yhlyn) + 8, 10
of the two possible von Neumann measurements. WlWl)
Finally, we want to point to an interesting feature of the =7, Tr(P% ap%) + 75 Tr(p%pﬁp%)_ (4.4)

solution. The results hold true even when the first input state ) ) )
i) lies entirely in. In this case the two von Neumann Thellgst expression, although again supgrfluous, makes it
decompositions coincide and the range of validity of theexphcn_that in this case_the measurement is a von Neumann
POVM solution shrinks to zero. A click in the, detector ~Projection on the one-dimensional subspatg .
corresponds to failure since it can originate from either of the ~Finally, Qpoynm can be written in terms of the density ma-
two subsets and a click in one of the detectors along th&1Ces as
?hr(t;’\hl[cg)gsc;r:fal directions unambiguously identifies an input from Qrovm = 2V7,77S= 2V 7,775 Tr(papp).- (4.5
Since all of the failure probabilities can be expressed in
terms of invariant expressions of the density matrices only,
we have just shown that filtering is equivalent to the optimal
unambiguous discrimination between a rank 1 mixed gtate

In this section we shall establish a connection betweepure statgand an arbitrary mixed state, providing the sim-
quantum state filtering and the discrimination of mixedplest example for discrimination between mixed states.
states. In fact, we will show that filtering is equivalent to the ~ Before leaving the realm of mixed state discrimination we
problem of discrimination between a pure stéerank 1~ Wantto point to an interesting connection to earlier work. We
mixed statg and an arbitrary(rank N) mixed state. Thus hotice that the fidelityF between a pure statg)) and a
filtering can be regarded as an instance of mixed state dignixed statep is given by[10]

crimination. - —.f
It is possible to express a number of the quantities in the F(w)ut.p) = (ol = VTr(|yXdlp). (4.6

solution in a more compact way. Since we do not want toThe optimal POVM failure probability can be written as
resolve the individual states in the two sets, the states in a set R

can be given an ensemble description. To make the connec- Qrovm = 2V 7a15F (pas pp) - (4.7
tion between the set discrimination and the ensemble vie
point, we define two density matrices

IV. SET DISCRIMINATION AS DISCRIMINATION OF
MIXED STATES

Wihis coincides with the lower bound on the optimal failure

probability found by Rudolphet al. [11], constructively
Pa= ), proving that, for this case, the lower bound can be saturated
in the range of validity of the optimal POVM.

N
pp= 2 7} ly)ahl, (4.1) V. GEOMETRICAL INTERPRETATION OF THE OPTIMAL
j=2 MEASUREMENTS

where the primed quantities have been introduced in connec- In this section we show that for a Comp|ete description of
tion with Eq.(3.12. Thea priori probabilities of these states the POVM one does not need to invoke Neumark’s theorem.
are given by, =»; and 75=1-7,, respectively. Since these |n fact, a complete description is possible without ever leav-
density matrices completely characterize the sets all resuligg the Hilbert space of the system and enlarging it with the
should be eXpreSSible in terms of them. |ndeed, we han_nci”a degrees of freedom]' Of course, Neumark’s theo-
immediately that rem is still useful when it comes to a physical implementa-
- _ tion of the POVM.
S= <l’[j1|pﬁ| Y1) = Trpapp). 4.2 The POVM will have three possible measurement results,
We ultimately want to find a compact expression for theone that corresponds {g,), one that corresponds to th#

optimal failure probabilities. We can expre®s in terms of ~ set and one that corresponds to failure. In order to describe
Par Pp @NAP, as the measurement, we introduce the quantum detection opera-
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tors 114, II,, and I1,, also called POVM elements, corre- _ D

spondilng the three possible measurement results. We then MM, = Colez)eg] + Py. .7
have that(y|I1,|¢,)=p.(=p,) is the probability of success- It is also possible to express the, as yet undetermined, con-
fully identifying | 1), (ya|llo|ya)=0.(=q,) is the probability s.tantsc1 andc, in terms of the success or failure probap@li—
of failing to identify [141), (¢;|T1,|¢;)=pj is the probability of ties for the sets. From the .def|n|t|'on of th(_ase probabilities,
successfully assigningy) (for j=2,... N) to the 3 set, and ~ 9Iven at the beginning of this section, we find

(¢|to|44;)=q; is the probability of failing to assighy;). For 1-q,

later purposes, we also introducp%:zgnj’ p; and qg=1 C1= 1-||ldP’
—pg. For unambiguous filtering we then requife;|TTy|¢;) 1
=(yn|TI,|¢1)=0 (for j=2,..N). We want these possibilities to

be exhaustive, 1

el
T W
I, + 1L, + 1, =1, (5.2 szw- (5.9

wherel is the identity in{. The probabilities are always real

. R, . Our final task is to choose, andc, as large as possible
and non-negative which implies that the quantum detecnog 1 2 9 P

this will minimize the failure probabilitigsconsistent with
he requirement thdtl, be positive. Sincdl, is a simple 2
by 2 matrix in H4, the corresponding eigenvalue problem

operators are non-negative. The conditions of positivity an
unambiguous filtering require that

H1|llfj> =0, can be solved analytically. Non-negativity of the eigenvalues
leads, after some tedious but straightforward algebra, to the
IL,|y1) =0, (5.2)  condition
for j=21 ....N. qan:SETr(papB)' (59)

~Inorderto find the form of the POVM elements explicitly, Note that this condition is consistent with E@.11). Multi-
itis useful to define the subspatg to be the linear span of | ving Eq.(2.12) with ' and taking the sum ovérleads to

the, in general‘ nonorthogonaﬂ but Enearly independent, vecte above condition. The task then is to find the minimum of
tors |i41) and|i}). Note thatHi CH. where L denotes the he average failure probability

orthogonal complement ifi{. The two POVM element$l,;
andII, will be related to two different orthogonal decompo- Q= 7,04+ 7545, (5.10

_sitions_ole. _Indeed, the first of the above requirements , qer the constraint of E@5.9. This, once again, gives the
immediately gives us the form df,. We must have solution(3.15), found via the Neumark approach. In particu-
I, = ¢ le e, (5.3 lar, we obtain the optimum values of the failure probabilities

as
where|e,) is the unit vector i, that is orthogonal tdy}).

The constant & c; <1 remains to be determined. q,= lllgs Qs = /@S (5.11)
The second requirement tells us that the suppokid ofs “« Do & 7 ' '
contained in_, the subspace orthogonal f@,. We can

learn more aboutl, by looking at the failure operator which,
from Eq.(5.1), is given as

Inserting these values in E.8) gives us the explicit ex-
pressions for the optimal POVM elements. More impor-
tantly, the positivity conditions of; andc, give us the range
[Iy=1-1I; - II,. (5.4  of existence of the POVM solution. Obviously, foy>0 we

. - . have to requireg, <1 and forc,>0 we have to require|s
This operator must be positive, and we want the failure prob< S/|W'1||2- Combining these with Eq5.9) we obtain that the

abilities to be as small as possible. For a normalized vecto S L ;
) er, we have IBOVM solution is valid in the interval

S
(|l = 1 = (v|IL, o). (5.5 lP<d,<1, S<gz< i (5.12
1

This will achieve the minimum value consistent with the ) ) S
positivity of I1,, which is 0, if II,Jv)=|v). This means that Which is of course identical to our earlier findings.

we can expres$l, as From these results, it is now very easy to see what hap-
. pens at the boundaries. Whep=1 and qz=S we have
I, = P I1,P; + Py, (5.6) ¢;=0 andc,=1 and the POVM degenerates into projective

_ von Neumann measurements corresponding to the second
whereP; is the projection ontd{;, andP,=1-P;. The ap-  decomposition of;. P,I1,P;=|e,)(e,| will be part ofI1, for
pearance of the projectdt; in the POVM element is a con- successfully identifying an input from from thé set and
sequence of what is called the reduction theorem in Reflly=|#;)(¢n| becomes a projector for failure, so the input
[12]. Defineley) to be the normalized vector ity that is  |y) will be missed completely. Conversely, whegp=||¢]/?
orthogonal to|¢,). The second requirement in EG.2) im-  and qﬁ:S/||<ﬂ‘l||2 we havec;=1 andc,=0 and the POVM
plies thatP,I1,P;=c,|e,){e,|, where O<c,<1. Combining degenerates into projective von Neumann measurements cor-
our results for the different parts &f,, we have that responding to the first decomposition &f;. Now, we have

042314-6



OPTIMAL UNAMBIGUOUS FILTERING OF A QUANTUM... PHYSICAL REVIEW A 71, 042314(2005

IT,=|e;)X(e,| for successfully identifying the input as being which we are trying to discriminate between a set containing
from thea set andT,=|¢A)y4| /(| ;) becomes a projector one quantum state and another containing the remaiNing
for failure. In this later case both types of input can be iden—1 states. A method for finding the optimal strategy for dis-
tified. Finally, we note that from these considerations it isCriminating between these two sets was presented, and ex-
clear that for the implementation of Neumark’s theorem onlyplicit analytical solutions were given. For the special case of
the subspac@{; has to be entangled with the ancilla, giving N=3, which we treated earlier, we proposed a quantum op-

further directions for an experimental realization. tical implementation of the optimal POVM strategy based on
linear optical devices only4]. Since our original proposal
VI. CONCLUSIONS the experiment has been performed, and the results are in

perfect agreement with our theoretical predictiph3].

The usual problem considered when trying to unambigu- One application of these results is the development of
ously discriminate among quantum states is to correctlquantum algorithmg5]. A more detailed consideration of
identify which state a given system is in when one knows thehese and related problems is left for a subsequent publica-
set of possible states in which it can be prepared. Here wgon [14].
have considered a related problem that can lead to further
generalizations and applications in quantum information and ACKNOWLEDGMENTS
quantum computing. The set df possible states is divided
into two subsets, and we only want to know to which subset This research was partially supported by the National Sci-
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