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Deterministic discrimination of nonorthogonal states is forbidden by quantum measurement theory. How-
ever, if we do not want to succeed all the time, i.e., allow for inconclusive outcomes to occur, then unambigu-
ous discrimination becomes possible with a certain probability of success. A variant of the problem is set
discrimination: the states are grouped in sets and we want to determine to which particular set a given pure
input state belongs. We consider here the simplest case, termed quantum state filtering, when theN given
nonorthogonal stateshuc1l , . . . ,ucNlj are divided into two sets and the first set consists of one state only while
the second consists of all of the remaining states. We present the derivation of the optimal measurement
strategy, in terms of a generalized measurementspositive-operator-valued measured, to distinguishuc1l from
the sethuc2l , . . . ,ucNlj and the corresponding optimal success and failure probabilities. The results, but not the
complete derivation, were presented previouslyfPhys. Rev. Lett.90, 25901s2003dg as the emphasis there was
on appplication of the results to probabilistic quantum algorithms. We also show that the problem is equivalent
to the discrimination of a pure state and an arbitrary mixed state.
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I. INTRODUCTION

In quantum information and quantum computing the car-
rier of information is a quantum system and information is
encoded in its state. In the simplest case the system lives in a
two-dimensional Hilbert space and the two basis vectors are
conveniently asssociated with the logical 0 and 1. Such a
two-level system is called a qubit. However, it is not neces-
sary to restrict our attention to qubits;d-dimensional sys-
tems, or qudits, can also be used to store quantum informa-
tion. Reading out the information from the quantum system
is tantamount to identifying the state it is in where the state
itself might be the output of a quantum channel or the result
of a quantum computation.

We want to find the optimum measurement that extracts
information about the state. This problem is different from
the usual textbook measurement as no ensemble averaging is
involved nor are we interested in the average value of some
physical observable. Every time a system reaches the final
step we want to determine its state. Since the state of a sys-
tem is not an observable in quantum mechanics, this sounds
at first as if it is an impossible task. There are ways around it,
however. Quantum processors are designed in such a way
that their output is a member of a set ofknownstates, so we
are facing the more modest problem of determining which of
these states was realized. If the possible target states are
mutually orthogonal this is an easy task: we just set up de-
tectors along the corresponding orthogonal directions and de-
termine which one clickssassuming perfect detectors, of
coursed. However, if the target states are not mutually or-
thogonal the problem is still difficult and optimization with
respect to some reasonable criteria leads, in general, to
highly nontrivial measurement strategies. Finding the opti-
mal measurement strategy is the subject of state discrimina-
tion. An overview of the state-of-the-art in the area of state
discrimination can be found, for example, in our recent re-
view f1g so here we just recall the immediate preliminaries.

One possible criterion is that no error is permitted, i.e., the
states have to be discriminated unambiguously. Quantum
measurement theory tells us that it is impossible to unam-
biguously discriminate between nonorthogonal quantum
states with unit probability of success so we have to settle for
less. If we do not require that we succeed every time, then
unambiguous discrimination becomes possible. When the at-
tempt fails, an inconclusive answer is returned. The optimal
strategy is the one that minimizes the average probability of
failure. Interest in unambiguous state discrimination was re-
newed by the suggestion to use nonorthogonal quantum
states in certain secure quantum cryptographic protocols, in
order to establish a secure key. A particularly clear example,
based on a two-state procedure, was developed by Bennett
f2g.

In most of the previous work discrimination among all
members of a set of states was considered. Subsequently, we
turned our attention to the following variant of the problem.
Instead of discriminating among all states, we ask what hap-
pens if we just want to discriminate between subsets of them.
In this class of problems we know that a given system is
prepared in one ofN known nonorthogonal quantum states,
but we do not know which one. We want to assign the state
of this system to one or the other of two complementary
subsets of the set of theN given states where one subset has
M elements and the other hasN−M sM øN/2d. Since the
subsets are not mutually orthogonal, the assignment cannot
be done with a 100% probability of success. For the case that
the assignment is to be performed with minimum error, the
solution has been found for arbitraryM and N under the
restriction that the Hilbert space spanned by the states is two
dimensionalf3g. For the case that the assignment is required
to be unambiguous, at the expense of allowing inconclusive
results to occur, the probability of which is minimized, the
problem has been solved forM =1, N=3 in Ref.f4g. We refer
to either case as quantum state filtering, a term that we
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coined in Ref.f3g, whenM =1 andNù3. The solution pre-
sented in Ref.f4g can be generalized in a straightforward
manner to arbitraryN. In our recent work we presented the
exact analytical solution, but not its derivation, of the unam-
biguous quantum state filtering problem—the case ofM =1
and N arbitrary, with no restriction on the states—and em-
ployed it to develop a quantum algorithmf5g.

In this paper we fill in the gaps and derive the solution
that we used in Ref.f5g. The paper is organized as follows.
In Sec. II, based on simple but rigorous arguments, we derive
the main analytical solution to the optimal positive-operator-
valued measurementsPOVMd problem. It invokes Neu-
mark’s theorem in order to develop a physical implementa-
tion of a generalized measurement. In Sec. III, we investigate
the region of validity of the POVM solution and show that
outside this region standard von Neumann projective mea-
surements can be used to perform optimal unambiguous dis-
crimination. In Sec. IV, we connect the problem of quantum
state filtering to the unambiguous discrimination of mixed
quantum states and show that our solution can be viewed as
the discrimination of a pure state and an arbitrary mixed
state. In Sec. V we give an alternative derivation of the op-
timal measurement which is based on considering the geom-
etry of the Hilbert space, and it is closer in spirit to the
standard approach to POVMs. Of course, the results are
identical to those of the previous sections. A brief discussion
of recent experimental progress and conclusions are given in
Sec. VI.

II. DERIVATION OF THE OPTIMAL POVM

Suppose we are given a quantum system prepared in the
stateucl, which is guaranteed to be a member of the set ofN
known nonorthogonal stateshuc1l , uc2l , . . . ,ucNlj, but we do
not know which one. We denote byhi the a priori probabil-
ity that the system was prepared in the stateucil. We want to
find a procedure that will unambiguously assign the state of
the quantum system to one or the other of two complemen-
tary subsets of the set of theN given nonorthogonal quantum
states, eitherhuc1lj or huc2l , . . . ,ucNlj. For unambiguous dis-
crimination the procedure has to be error free, i.e., it may fail
to give us any information about the state, and if it fails, it
must let us know that it has, but if it succeeds, it should
never give us a wrong answer. Clearly, this is a variant of the
unambiguous state discrimination problem, and we shall re-
fer to such a procedure as quantum state filtering without
error. We find that, in contrast to the unambiguous state dis-
crimination problem, this will be possible even ifuc1l is not
linearly independent from the sethuc2l , . . . ,ucNlj.

According to the quantum theory of measurement, the
states cannot be discriminated perfectly if they are not mu-
tually orthogonal. Thus, if we are givenucil, we will have
some probabilitypi to correctly assign it to one of the subsets
and, correspondingly, some failure probabilityqi =1−pi to
obtain an inconclusive answer. The average probabilities of
successP and failureQ=1−P to correctly assign the states
ucil, i =1, . . . ,N are

P = o
i

N

hipi ,

Q = o
i

hiqi , s2.1d

respectively. Our objective is to find the sethqij that mini-
mizes the average probability of failureQ or, equivalently,
the sethpij that maximizes the average probability of success
P.

The procedure we shall use is a so-called “generalized
measurement,” based on POVMf6g. Using Neumark’s theo-
rem, a POVM can be implemented in the following wayf7g.
We first embed the system in a larger Hilbert spaceK con-
sisting of the original system spaceH and an auxiliary Hil-
bert space called the ancillaA. We takeK to be a tensor
product K=H ^ A. Then we introduce an interaction be-
tween the system and ancilla corresponding to a unitary evo-
lution on this larger space. The unitary evolution entangles
the system degrees of freedom with those of the ancilla. Fi-
nally, a projective measurement is performed on the extra
degrees of freedom. Due to the entanglement, a click in the
ancilla detectors will also transform the state of the original
system in a general way. We choose this resulting transfor-
mation of the system states to be the most appropriate for our
filtering purposes.

In order to accomodateN states the dimension of the sys-
tem spaceH, d, need be no more thanN, i.e.,døN. Equality
holds when all of the vectorsucil are linearly independent.
We will use N as the dimensionality ofH in the following
treatment. The dimension of the ancillaA is a key point in
obtaining the optimal solution and we will consider it next.

The input state of the system is one of the vectorsucil,
which is now a vector in the subspaceH of the total spaceK,
so that

uci
Klin = uci

Hluf0
Al, s2.2d

where uf0
Al is the initial state of the ancillassame for all

inputsd. Following the general procedure outlined in the pre-
vious paragraph for the generalized measurement we now
apply a unitary transformationU that entangles the system
with the ancilla degrees of freedom. As a result, the input
vector transforms into the stateuci

Klout. This state can be
expanded using a basishumk

Alj for A. For the purposes of
optimum unambiguous discrimination between the two sets,
we want three different outcomes when a projective mea-
surement is performed on the ancilla: one that tells us that
the input was a state from the first set, one that tells us that it
was from the second set, and one that tells us that the dis-
crimination failed. Thus, we require the ancilla to be three-
dimensionalsk=1,2,3d, as explained below, yielding

uci
Klout ; Uuci

Klin = di,1uc18
Hlum1

Al + s1 − di,1duci8
Hlum2

Al

+ uci9
Hlum3

Al. s2.3d

In the following we drop the upper indexH andA if it does
not lead to confusion. We also note that the statesuci8

Hl and
uci9

Hl are not normalized. From the construction of the out-
put state we see that the first outcome is compatible with the
first input, the second with an input state from the second set
and the third outcome is compatible with both inputs. We
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might want to require thatuc18l be distinguishable from
uc28l , . . . ,ucN8 l, yielding the condition

kc18uc j8l = 0 s2.4d

for j =2, . . . ,N sin general,i runs from 1 toN and j from 2 to
Nd. Strictly speaking, though, this condition is only conve-
nient but not necessary.

Now, a state selective measurement is performed on the
ancilla that projectsuci

Klout onto one of the basis vectorsumil
si =1,2,3d. If it projects uci

Klout onto um1l or um2l, the proce-
dure succeeds, because we can unambiguously assign the
input to one or the other set. The probability to get this
outcome, if the input state isucil, is

pi = kci8uci8l. s2.5d

If the measurement projectsuci
Klout onto um3l, the procedure

fails because it conditionally transforms all input system
states into the output that cannot be distinguished. The prob-
ability of this outcome, if the input state isucil, is

qi = kci9uci9l. s2.6d

From the unitarity of the transformation in Eq.s2.3d the re-
lation

pi + qi = 1 s2.7d

immediately follows, by taking the scalar product of the two
sides with their adjoints.

The nature of the problem we are trying to solve imposes
a number of other constraints and requirements on the output
vectors. Let us first consider the set of system states associ-
ated with a click in theum3l detectorhuci9lj, which we also
call failure vectors. If they were linearly independent, we
could apply a further state discrimination procedure to them
f8g, contrary to our assumption that this direction is associ-
ated with an inconclusive outcome. Therefore, the optimal
procedure should lead to failure vectors to which we cannot
successfully apply a state discrimination procedure, implying
that they are linearly dependent. In fact, more is true and it is
easy to show that they must be collinear by demonstrating
that the contrary leads to contradiction. To this end, let us
assume that the failure vectors arenot collinear. Then at least
one of the the failure vectorsuc j9l will have a component in
the direction that is perpendicular touc19l in H. We can set up
a detector in the system Hilbert space projecting onto this
direction and a click of the detector will tell us that our input
state was notuc1l but one of the otherN−1 states. Thus,
contrary to our assumption that the third dimension of the
ancilla is associated with the inconclusive outcome, further
discrimination is possible. Hence, the failure vectors must be
collinear.

Next, we take the scalar product betweenuc1
Klout and

uc j
Klout. Using Eq.s2.3d and the fact thatU is unitary lead to

the conditions

kc19uc j9l = kc1uc jl s j . 1d. s2.8d

Our objective is to find the optimaluc19l and uc j9l which sat-
isfy Eqs.s2.5d–s2.8d and maximize the success probabilityP.
We shall now explore the consequences of the conclusion

that uci9l si =1, . . . ,Nd are collinear, i.e., the failure space, a
subspace ofH, is one dimensional. Ifuc0l is the basis vector
spanning this Hilbert space then, taking Eq.s2.6d into ac-
count, we can write the failure vectors as

uci9l = Îqie
xiuc0l, s2.9d

wherexi is the phase ofuci9l. Substituting this representation
of the failure vectors in Eq.s2.8d gives

kc1uc jl = Îq1qje
isx j−x1d, s2.10d

which determines the phases forj =2, . . . ,N.
Taking the magnitude of Eq.s2.10d, yields

q1qj = ukc1uc jlu2 s j . 1d. s2.11d

TheseN−1 conditions are a consequence of unitarity and
imply that only one of theN failure probabilities can be
chosen independently. If we choseq1 as the independent one
we can express the others asqj = ukc1uc jlu2/q1. Let Oij

;kci uc jl then the average failure probabilityQ=oi
Nhiqi can

be written explicitly as

Q = h1q1 +
o j=2

N
h juO1ju2

q1
. s2.12d

From the condition for minimum

dQ

dq1
= 0, s2.13d

we now find the optimal value ofq1 as

q1 =Îo j=2

N
h juO1ju2

h1
. s2.14d

Inserting this value into Eq.s2.12d finally gives

QPOVM = 2Îo
j=2

N

h1h juO1ju2. s2.15d

This result represents the absolute optimum for the measure-
ment problem at hand. In the following we will investigate
its range of validity and derive the complete solution that is
valid for all values of the parameters.

III. LIMITATIONS OF THE POVM AND THE COMPLETE
SOLUTION

The value given in Eq.s2.15d for the minimum probabil-
ity of failure cannot always be realized. For it to be true,
there has to exist a unitary transformation that takesucilin to
ucilout in Eq. s2.3d. One of the consequences of unitarity is
the conservation of norm which is expressed by Eqs.
s2.5d–s2.7d. Another consequence is the conservation of the
scalar product which we only partially used in Eq.s2.8d.
Taking the scalar product ofucllout with ucklout from Eq.s2.3d
leads to the generalization of Eq.s2.8d
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kcluckl = kcl8uck8l + Îqlqke
isxk−xld. s3.1d

Obviously,k=1 andl = j .2 reproduces Eq.s2.8d as a special
case since, according to Eq.s2.4d, kc18 uc j8l=0 for j
=2, . . . ,N. These equations imply that

kcl8uck8l = kcluckl − Îqlqke
isxk−xld. s3.2d

This set of equations can only be true if the matrixM, where

Mlk = kcluckl − Îqlqke
isxk−xld s3.3d

is positive semidefinite, as discussed in detail in Ref.f9g.
The matrixMlk;kcl8 uck8l has the structure

M = SMa 0

0 Mb D , s3.4d

whereMa=M11=1−q1 and all other elements in the first row
and first column are zero because of the conditions2.4d, and
Mb=Mjj 8 for j , j8=2, . . . ,N.

Thus, one of the positivity conditions isq1ø1 from the
positivity of Ma. If q1=1, then the average failure probabil-
ity, which we denote byQa, becomes

Qa = h1 + o
j=2

N

h juO1ju2, s3.5d

which follows from Eq.s2.12d with q1=1. Note that this is
the same average probability that we would obtain if we
projected the state of the system we were given ontouc1l.

In order to evaluate the positivity condition forMb we
first express the second term on the right-hand side of Eq.
s3.3d as

Îqjqj8e
isxk−xld =

kc juc1lkc1uc j8l

q1
, s3.6d

where we multiplied Eq.s2.10d with its conjugate forj8. This
allows us to write

Mjj 8 = kc juc j8l −
kc juc1lkc1uc j8l

q1
. s3.7d

At this point, it is convenient to introduce the following no-
tation. We callhuc1lj the a set andhuc jl u j .1j the b set.
DefineHa to be the one-dimensional space that is the span
of uc1l, andHb to be the span ofhuc jl u j =2, . . . ,Nj. In addi-
tion, let Pa be the projection ontoHa, andPb be the projec-
tion ontoHb. This gives us two different decompositions of

the system Hilbert spaceIH=Pa+ P̄a=Pb+ P̄b, where the
overbar stands for projection onto the orthogonal comple-
ment. Then we can write, forj , j8.1,

Mjj 8 = kc juPbuc j8l −
kc juPbuc1lkc1uPbuc j8l

q1

=Kc jUFPb −
uc1

i lkc1
i u

q1
GUc j8L , s3.8d

where uc1
i l=Pbuc1l is the component ofuc1l in Hb. This

leads to a further decomposition of theHb subspace,Pb

=Pb
i +Pb

', wherePb
i ;uc1

i lkc1
i u / kc1

i uc1
i l andPb

' is the projec-

tion onto the orthogonal subspace ofHb. Thus,Mb is posi-
tive semidefinite ifq1ù kc1

i uc1
i l. Whenq1=kc1

i uc1
i l, the fail-

ure probability is

Qb = h1kc1
i uc1

i l +
o j=2

N
h juO1ju2

kc1
i uc1

i l
. s3.9d

This is the same failure probability that is obtained by pro-
jecting each quantum system we are given ontoPb

i .
Combining the conditions for the positivity ofMa and

Mb, we find that the POVM solution is valid if

kc1
i uc1

i l ø q1 ø 1. s3.10d

In view of Eq. s2.11d this condition ensures that all failure
probabilities will be bounded by similar inequalities

kc j
iuc j

il ø qj ø 1, s3.11d

where we introduced the notationuc j
il=Pauc jl for the com-

ponent of any state from the second set inHa.
The boundaries for the validity of the POVM solution

s3.10d for Eq. s3.11dg, can be expressed in terms of the inde-
pendent parameters of the problem. Thea priori probability
that the input state is from thea set isha;h1, and thea
priori probability that it is from theb set ishb;1−has=1
−h1d. Next, we introduce the renormalizeda priori prob-
abilities,h j8=h j /hb, for j .1. In terms of these renormalized
quantities we can writeq1 for the optimal POVM, Eq.s2.14d,
as

q1 =Îs1 − h1do j=2

N
h j8uO1ju2

h1
. s3.12d

Substitution into Eq.s3.10d yields upper and lower bounds
for the a priori probability of the state to be filtered,

S

S+ 1
ø h1 ø

S

S+ ukc1
i uc1

i lu2
, s3.13d

with

S; o
j=2

N

h j8uO1ju2. s3.14d

Within these bounds the POVM solution is valid.
Summarizing Eqs.s2.15d, s3.5d, ands3.9d and taking Eq.

s3.13d into account, we can write the optimal solution as

Qopt =5
QPOVM if

S

1 + S
ø h1 ø

S

S+ ukc1
i uc1

i lu2
,

Qa if h1 , hl ;
S

1 + S
,

Qb if h1 . hu ;
S

S+ ukc1
i uc1

i lu2
,
6
s3.15d

representing our main result. In the intermediate range ofh1
the optimal failure probabilityQPOVM is achieved by a gen-
eralized measurement or POVM. Outside this region, the op-
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timal failure probabilitiesQa andQb are realized by standard
von Neumann measurements, corresponding to two different

orthogonal decompositions ofH. For h1,hl, IH=Pa+ P̄a. A
click of the Pa detector corresponds to failure because it can
have its origin in either of the two subsets and a click in the
orthogonal directions uniquely assigns the input state to the

b set. Forh1.hu, IH=Pb
i +Pb

'+ P̄b. A click of the Pb
i detec-

tor corresponds to failure because it can have its origin in

either of the two subsets, a click of theP̄b detector uniquely
assigns the input state to thea set and a click of thePb

'

detector uniquely assigns the input state to theb set. At the
boundaries of their respective regions of validity, the optimal
measurements transform into one another continuously. In its
range of validity the POVM performs better than either one
of the two possible von Neumann measurements.

Finally, we want to point to an interesting feature of the
solution. The results hold true even when the first input state
uc1l lies entirely inHb. In this case the two von Neumann
decompositions coincide and the range of validity of the
POVM solution shrinks to zero. A click in thePa detector
corresponds to failure since it can originate from either of the
two subsets and a click in one of the detectors along the
orthogonal directions unambiguously identifies an input from
the b set.

IV. SET DISCRIMINATION AS DISCRIMINATION OF
MIXED STATES

In this section we shall establish a connection between
quantum state filtering and the discrimination of mixed
states. In fact, we will show that filtering is equivalent to the
problem of discrimination between a pure statesa rank 1
mixed stated and an arbitrarysrank Nd mixed state. Thus
filtering can be regarded as an instance of mixed state dis-
crimination.

It is possible to express a number of the quantities in the
solution in a more compact way. Since we do not want to
resolve the individual states in the two sets, the states in a set
can be given an ensemble description. To make the connec-
tion between the set discrimination and the ensemble view-
point, we define two density matrices

ra = uc1lkc1u,

rb = o
j=2

N

h j8uc jlkc ju, s4.1d

where the primed quantities have been introduced in connec-
tion with Eq.s3.12d. Thea priori probabilities of these states
are given byha=h1 andhb=1−h1, respectively. Since these
density matrices completely characterize the sets all results
should be expressible in terms of them. Indeed, we have
immediately that

S= kc1urbuc1l = Trsrarbd. s4.2d

We ultimately want to find a compact expression for the
optimal failure probabilities. We can expressQa in terms of
ra, rb, andPa as

Qa = ha + hb Trsrarbd

= ha + hbS= ha TrsParaPad + hb TrsParbPad.

s4.3d

The last expression, although superfluous, makes it explicit
that in this case the measurement is a von Neumann projec-
tion on the one-dimensional subspaceHa.

Similarly, we can expressQb in terms of the density ma-
trices andPb

i as

Qb = hakc1
i uc1

i l + hb

Trsrarbd
kc1

i uc1
i l

= hakc1
i uc1

i l + hb

S

kc1
i uc1

i l

= ha TrsPb
i
raPb

i d + hb TrsPb
i
rbPb

i d. s4.4d

The last expression, although again superfluous, makes it
explicit that in this case the measurement is a von Neumann
projection on the one-dimensional subspaceHb̃.

Finally, QPOVM can be written in terms of the density ma-
trices as

QPOVM = 2ÎhahbS= 2Îhahb Trsrarbd. s4.5d

Since all of the failure probabilities can be expressed in
terms of invariant expressions of the density matrices only,
we have just shown that filtering is equivalent to the optimal
unambiguous discrimination between a rank 1 mixed statesa
pure stated and an arbitrary mixed state, providing the sim-
plest example for discrimination between mixed states.

Before leaving the realm of mixed state discrimination we
want to point to an interesting connection to earlier work. We
notice that the fidelityF between a pure stateucl and a
mixed stater is given byf10g

Fsuclkcu,rd = Îkcurucl = ÎTrsuclkcurd. s4.6d

The optimal POVM failure probability can be written as

QPOVM = 2ÎhahbFsra,rbd. s4.7d

This coincides with the lower bound on the optimal failure
probability found by Rudolphet al. f11g, constructively
proving that, for this case, the lower bound can be saturated
in the range of validity of the optimal POVM.

V. GEOMETRICAL INTERPRETATION OF THE OPTIMAL
MEASUREMENTS

In this section we show that for a complete description of
the POVM one does not need to invoke Neumark’s theorem.
In fact, a complete description is possible without ever leav-
ing the Hilbert space of the system and enlarging it with the
ancilla degrees of freedomf6g. Of course, Neumark’s theo-
rem is still useful when it comes to a physical implementa-
tion of the POVM.

The POVM will have three possible measurement results,
one that corresponds touc1l, one that corresponds to theb
set and one that corresponds to failure. In order to describe
the measurement, we introduce the quantum detection opera-
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tors P1, P2, and P0, also called POVM elements, corre-
sponding the three possible measurement results. We then
have thatkc1uP1uc1l=p1s;pad is the probability of success-
fully identifying uc1l, kc1uP0uc1l=q1s;qad is the probability
of failing to identify uc1l, kc juP2uc jl=pj is the probability of
successfully assigninguc jl sfor j =2, . . . ,Nd to theb set, and
kc juP0uc jl=qj is the probability of failing to assignuc jl. For
later purposes, we also introducepb=S2

Nh j8pj and qb=1
−pb. For unambiguous filtering we then requirekc juP1uc jl
=kc1uP2uc1l=0 sfor j =2, ...Nd. We want these possibilities to
be exhaustive,

P1 + P2 + P0 = I , s5.1d

whereI is the identity inH. The probabilities are always real
and non-negative which implies that the quantum detection
operators are non-negative. The conditions of positivity and
unambiguous filtering require that

P1uc jl = 0,

P2uc1l = 0, s5.2d

for j =2, . . . ,N.
In order to find the form of the POVM elements explicitly,

it is useful to define the subspaceH1 to be the linear span of
the, in general nonorthogonal but linearly independent, vec-
tors uc1l and uc1

i l. Note thatH1
'#Ha

' where' denotes the
orthogonal complement inH. The two POVM elementsP1
andP2 will be related to two different orthogonal decompo-
sitions of H1. Indeed, the first of the above requirements
immediately gives us the form ofP1. We must have

P1 = c1ue1lke1u, s5.3d

whereue1l is the unit vector inH1 that is orthogonal touc1
i l.

The constant 0øc1ø1 remains to be determined.
The second requirement tells us that the support ofP2 is

contained inHa
', the subspace orthogonal toHa. We can

learn more aboutP2 by looking at the failure operator which,
from Eq. s5.1d, is given as

P0 = I − P1 − P2. s5.4d

This operator must be positive, and we want the failure prob-
abilities to be as small as possible. For a normalized vector
uvlPH1

', we have

kvuP0uvl = 1 − kvuP2uvl. s5.5d

This will achieve the minimum value consistent with the
positivity of P0, which is 0, if P2uvl= uvl. This means that
we can expressP2 as

P2 = P1P2P1 + P̄1, s5.6d

whereP1 is the projection ontoH1, and P̄1= I −P1. The ap-

pearance of the projectorP̄1 in the POVM element is a con-
sequence of what is called the reduction theorem in Ref.
f12g. Define ue2l to be the normalized vector inH1 that is
orthogonal touc1l. The second requirement in Eq.s5.2d im-
plies thatP1P2P1=c2ue2lke2u, where 0øc2ø1. Combining
our results for the different parts ofP2, we have that

P2 = c2ue2lke2u + P̄1. s5.7d

It is also possible to express the, as yet undetermined, con-
stantsc1 andc2 in terms of the success or failure probabili-
ties for the sets. From the definition of these probabilities,
given at the beginning of this section, we find

c1 =
1 − qa

1 − ic1
i i2 ,

c2 =

1 −
ic1

i i2

S
qb

1 − ic1
i i2 . s5.8d

Our final task is to choosec1 andc2 as large as possible
sthis will minimize the failure probabilitiesd consistent with
the requirement thatP0 be positive. SinceP0 is a simple 2
by 2 matrix in H1, the corresponding eigenvalue problem
can be solved analytically. Non-negativity of the eigenvalues
leads, after some tedious but straightforward algebra, to the
condition

qaqb = S; Trsrarbd. s5.9d

Note that this condition is consistent with Eq.s2.11d. Multi-
plying Eq. s2.11d with h j8 and taking the sum overj leads to
the above condition. The task then is to find the minimum of
the average failure probability

Q = haqa + hbqb, s5.10d

under the constraint of Eq.s5.9d. This, once again, gives the
solutions3.15d, found via the Neumark approach. In particu-
lar, we obtain the optimum values of the failure probabilities
as

qa =Îhb

ha

S, qb =Îha

hb

S. s5.11d

Inserting these values in Eq.s5.8d gives us the explicit ex-
pressions for the optimal POVM elements. More impor-
tantly, the positivity conditions ofc1 andc2 give us the range
of existence of the POVM solution. Obviously, forc1.0 we
have to requireqa,1 and forc2.0 we have to requireqb

,S/ ic1
i i2. Combining these with Eq.s5.9d we obtain that the

POVM solution is valid in the interval

ic1
i i2 ø qa ø 1, Sø qb ø

S

ic1
i i2 , s5.12d

which is of course identical to our earlier findings.
From these results, it is now very easy to see what hap-

pens at the boundaries. Whenqa=1 and qb=S we have
c1=0 andc2=1 and the POVM degenerates into projective
von Neumann measurements corresponding to the second
decomposition ofH1. P1P2P1= ue2lke2u will be part ofP2 for
successfully identifying an input from from theb set and
P0= uc1lkc1u becomes a projector for failure, so the input
uc1l will be missed completely. Conversely, whenqa=ic1

i i2

and qb=S/ ic1
i i2 we havec1=1 and c2=0 and the POVM

degenerates into projective von Neumann measurements cor-
responding to the first decomposition ofH1. Now, we have
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P1= ue1lke1u for successfully identifying the input as being
from thea set andP0= uc1

i lkc1
i u / kc1

i uc1
i l becomes a projector

for failure. In this later case both types of input can be iden-
tified. Finally, we note that from these considerations it is
clear that for the implementation of Neumark’s theorem only
the subspaceH1 has to be entangled with the ancilla, giving
further directions for an experimental realization.

VI. CONCLUSIONS

The usual problem considered when trying to unambigu-
ously discriminate among quantum states is to correctly
identify which state a given system is in when one knows the
set of possible states in which it can be prepared. Here we
have considered a related problem that can lead to further
generalizations and applications in quantum information and
quantum computing. The set ofN possible states is divided
into two subsets, and we only want to know to which subset
the quantum state of our given system belongs. We consid-
ered the simplest instance of this problem, the situation in

which we are trying to discriminate between a set containing
one quantum state and another containing the remainingN
−1 states. A method for finding the optimal strategy for dis-
criminating between these two sets was presented, and ex-
plicit analytical solutions were given. For the special case of
N=3, which we treated earlier, we proposed a quantum op-
tical implementation of the optimal POVM strategy based on
linear optical devices onlyf4g. Since our original proposal
the experiment has been performed, and the results are in
perfect agreement with our theoretical predictionsf13g.

One application of these results is the development of
quantum algorithmsf5g. A more detailed consideration of
these and related problems is left for a subsequent publica-
tion f14g.
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