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Abstract 

We have studied the effect of frequency detuning on phase locking in a two-element laser array. The observed modal behavior 
near the boundary of the locked and unlocked states shows that a two-element laser array can not be characterized simply as a 
two-mode system. The implication of the new understanding on previous theoretical predictions of laser dynamics is discussed. 

1. Introduction 

A commonly used method of increasing the output 
power of semiconductor lasers is the coherent addition 
of the output of a number of lasers by using evanescent 
coupling. In the evanescent-coupled semiconductor 
laser array, a number of laser elements are placed in 
close proximity to one another so that a small amount 
of field coupling exists between the nearest neighbors. 
One- and two-dimensional phase-locked semiconduc- 
tor laser arrays with a large number of elements have 
been demonstrated [ 1,2]. The array geometry has also 
been used for producing higher power in Nd : YAG and 
CO* lasers. Earlier studies of semiconductor phased 
arrays are mainly focused on their spatial mode struc- 
tures under the steady-state operating conditions. These 
spatial mode patterns in terms of the supermodes have 
been observed and well understood [ 3-51. In a laser 
array with N elements, the interaction among the ele- 
ments resulted in the formation of a set of N supermo- 
des, each being a linear superposition of the individual 
lasing modes. In the case of one-dimensional arrays, 
the lowest-order supermode corresponds to adjacent 
elements operating in phase such that the far-field beam 
pattern is single-lobed centered around zero degree. 
The highest-order supermode corresponds to adjacent 

emitters operating 180-degree out of phase such that 
the center of the intensity distribution in the far field is 
dark due to destructive interference. Without any modal 
selection mechanism, the out-of-phase mode usually 
has the highest modal gain and thus is favored. For 
obvious reasons, considerable effort has been focused 
on various techniques to ensure stable operation in the 
in-phase mode. 

Empirical data shows that the lateral distance for 
phase locking is not more than 10 p,rn for gain guided 
semiconductor lasers and 5 p+rn for index-guided sem- 
iconductor lasers [4]. In semiconductor lasers with 
individually addressable contacts, phase locking has 
been observed for separations as large as 20 pm [ 61. 
When phase locking is viewed as injection locking 
through the evanescence waves, the maximum lateral 
distance to maintain phase locking is set by the require- 
ment that the injected field be much larger than that of 
the spontaneous emission of the individual elements. 
Other factors, such as the frequency detuning between 
individual elements and the cavity Q-value, which 
affect injection locking are also believed to affect phase 
locking. So far, there has been no systematic and more 
controlled experimental study of these phenomena. 

In this paper we present an experimental study of 
phase locking in a two-element laser array with detun- 
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ing. The study is done in a two-element optically- 
pumped evanescent-wave coupled Nd : YAG laser 

array [ 7,8]. The optically-pumped solid-state laser 
array is chosen because the key parameters, such as 
detuning and coupling strength can be accurately con- 
trolled and easily varied. The measurements of the 
dynamical variables are also made easier by much 
slower time scale of laser dynamics. 

2. Experiment 

The schematic of the laser array is shown in Fig. 1. 
Two 808 nm diode lasers are used to end-pump a 5 mm 
long Nd : YAG etalon, creating two lasing filaments, 
each operating in the fundamental transverse mode. 
The diameter of the pumping beams is 50 Frn. The 
separation between the filaments can be continuously 
varied, without affecting the alignment, by adjusting 
the positions of the pumping beams. This enables us to 
study the locking range for various coupling strength. 
The two end surfaces of the YAG etalon are polished 
flat and nearly parallel with a four-second wedge angle 
and are coated with 100% and 95% reflectivity at 1064 
nm. The wedge angle provides a detuning between the 
two-elements. The detuning frequency can be varied 
by rotating the etalon about the axis of propagation, 
and can be detected from the beat waves when the two 
elements are unlocked. The transverse mode of the 
individual element is mainly determined by the ther- 
mally-induced refractive-index waveguide. In 
Nd : YAG, the refractive-index increase with respect to 
temperature is about 7 X 10e6/K [ 91. The real part of 
the refractive-index step, measured from the movement 
of the beating frequency as a function of the pumping 
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Fig. 1. Schematic of the Nd: YAG etalon with a wedge. Fig. 2. Real and imaginary refractive-index profiles of the waveguide. 

power, is 2 X lop6 at threshold. The imaginary part of 
the refractive index step, determined by the modal gain 
at threshold, is 1.5 X 10P6. Although the refractive- 
index profile of the waveguide is expected to be bell 
shaped, we assume a rectangular profile to simplify the 
analysis. The calculated fwhm of eigenmode of the 
stepped index waveguide is in close agreement with 
the experimentally measured result. The real and imag- 
inary part of the refractive-index profiles are shown in 
Fig. 2. 

When the two elements are phase locked in the anti- 
symmetric mode, the far-field intensity distribution 

exhibits a dark fringe at the center. For fixed wedge 
angle, the detuning increases linearly with separation. 
As the inter-element separation is increased while keep- 
ing a fixed relative wedge angle, the far-field pattern 
eventually become broad single-lobed which is the 
incoherent addition of the eigen mode of two incoher- 
ent elements. The breaking of phase locking is signified 
by a beat wave that can be detected by using an RF 
spectrum analyzer. To generate the map of the bound- 
ary of phase-locked region, the inter-element separa- 
tion is continuously increased for a fixed wedge angle 
and the frequency of the beat waves as they first occur 
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Fig. 3. Measured detuning frequency (open circles) at the boundary 

of phase locked and unlocked states as a function of inter-element 

separation. Path A and B are the experimental path along which the 

separation between the two elements are varied. 

is recorded as a function of the separation. The wedge 
angle is then increased/decreased and the experiment 
repeated to find the new locking boundary. The data 
are plotted in Fig. 3 with open circles. The boundary 
of the beat frequency ranges from 200 MHz ford = 300 
pm to 2 MHz for d = 600 pm. Phase locking is not 
observed for d > 600 pm. 

The modal patterns and the transitional behavior in 
the vicinity of the boundary is worth noting. To observe 
the far-field patterns cross the boundary the two ele- 
ments are pulled apart along path A and path B, which 
corresponding to different wedge angle. Pictures have 
been taken at various positions along the path, shown 
as filled circles in Fig. 3. For small inter-element sep- 
aration and large detuning, the transition from the 
phase-locked to unlocked states is abrupt as the 
boundary is crossed along path A in Fig. 3. The occur- 
rence of the beat wave is accompanied by a distinct 
change in the modal patterns from the two-lobed far- 
field profile, shown in Fig. 4a, to the single-lobed pro- 
file shown in Fig. 4b. For large inter-element separation 
and small detuning, the transition is gradual and the 
phenomenon is more complex. The occurrence of the 
beat wave is accompanied by the reduction of the con- 
trast ratio in the two-lobed far-field, as shown in Figs. 
5a and 5b. As the separation is further increased, the 
patterns undergo an evolution from the two-lobed pro- 

1.2 

0.6 

Angle (degree) 

1.0 

@I z 

h 

.z 0.8 

5 

2 

-0.2 -0.1 0.0 0.1 0.2 

Angle (degree) 
Fig. 4. Observed far-field patterns at various positions (rilled circles) 

along path A, in Pig. 3, measured at points (a) A and (b) A’. 

file to the three-lobed profile with a peak at the center 
(Fig. 5c), and, for further increase of separation, to the 
broad single-lobed profile (Fig. 5d). 

3. Analysis and discussion 

In the following, we will show that the observed 
modal patterns and transitional behavior can be 
explained based on the competition among the various 
eigen modes of the composite waveguide. First, we 
would like to point out that a two-element laser array 
with detuning is not a two-mode system but can possess 
numerous eigenmodes at different frequencies. Fig. 6 
illustrates the calculated near-field modal intensity pat- 
terns representing three different resonance conditions 
for an etalon with 15 MHz detuning between the ele- 
ments. The numerical calculation was done using the 
beam-propagation method [ 91 in an active waveguide. 
The laser is treated as an active Fabry-Perot etalon 
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Fig. 5. Observed far-field patterns at various positions (filled circles) along path B, in Fig. 3, measured at points (a) B, (b) B’, (c) B”, and (d) 
B”. 

whose resonance linewidth is given by the laser line- 
width of 200 kHz. For an initial field of arbitrary ampli- 
tude and phase distribution, the waves undergo 
repeated round trips in the cavity. The steady-state field 
is obtained by integrating the intra-cavity field over the 
coherence time of 30 l.~s. For the purpose of later dis- 
cussion, only the modes with one node are generated 
for each frequency. The commonly known phase- 
locked mode, denoted as mode C has a frequency that 
is resonant with the averaged cavity length 
1, = (Ii + ln) /2 of the composite waveguide. The waves 
propagating in the two branches of the waveguide in 
the wedged etalon are slightly off resonance by an equal 
amount and the resultant fields are equal in magnitude, 
as shown in Fig. 6b. For any other frequencies, the 
waves propagating in the two branches of the wave- 
guide experience different interference conditions, 

resulting in an asymmetric field distribution. Modes I 
and II in Figs. 6a and 6c correspond to frequencies 
nearly resonant with the cavity lengths Zr and Zn, respec- 
tively. If the detuning is sufficiently large, nearly all 
the intensity of modes I and II resides in one of the 
element as shown in Fig. 7 for a detuning of 350 MHz. 
For the detuning frequencies of interest in this paper, 
the difference in the length of the gain medium in the 
two branches is less than 10 .&. Thus these two asym- 
metric modes have nearly the same modal gain and can 
exist simultaneously, resulting in a beat wave at the 
detuning frequency. 

The lasing mode is the eigen modes of the composite 
waveguide with the largest modal gain. (The modal 
gain is the imaginary part of the modal index.) Mode 
C is favored over Modes I and II if 
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Fig. 6. Calculated near-field patterns for waves resonant with (a) the 

left branch, (b) the composite waveguide, and (c) the right branch. 

The inter-element separation of 550 pm and detuning frequency of 

15 MHz. 

exp[%,(Aw)ll R[l-a,(Aw)l 

>exp[2gi(Ao)zlR[1-a)i(Aw)l, (1) 

where g is the modal gain of the waveguide, 1 is the 
cavity length, R is the mirror reflectivity, LY is the cou- 
pling coefficient per reflection at the mirror. Both g and 
(Y are functions of the detuning frequency, Ao. For 
small detuning frequencies, Mode C is favored owing 
to its higher modal gain. Depending on the detuning 
frequency at the boundary, two limiting regions are 
discussed as following. 

3.1. Strong coupling 

For small inter-element separations, the normalized 
coupling coefficients can be as large as 0.1. The break- 
ing of phase locking typically occurs at large detuning 
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Fig. 7. Calculated near-field patterns for wave resonant with (a) the 

left branch, (b) the composite waveguide, and (c) the right branch. 

The inter-element separation is 350 pm and the detuning frequency 

is 350 MHz. 

frequencies involving the type of modes shown in Fig. 
7. The abrupt transition is due to the switching from 

Mode C, shown in Fig. 7b, which gives rise to a two- 

lobed far-field profile, to Modes I and II, shown in Figs. 

7a and 7c, which give rise to a broad single-lobed far- 
field profiles. In this regime, modal gains of Modes I 
and II can be approximated by those of the single ele- 

ment laser. The effect of unequal length between the 
two elements created by the wedge angle of the etalon 
is to introduce a position-dependent phase shift across 
the wave front and accompanied loss after each round 
trip inside the cavity. Assuming that the phase shift 

occurs near the wedged mirror, the coupling coefficient 
LY( Aw) upon reflection from the mirror can be calcu- 

lated from the overlapping integral of the wavefunc- 

tions of the incident and reflected waves: 
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Fig. 8. Calculated coupling coefficient (1 -a) as function of wedge 

angle for various inter-element separations. 

cw(Aw) = 
II 

$ exp[i2kAz(x) 1 $* * , 

where z(x) =x tan 6 and 8, the wedge angle, is related 
to the detuning frequency by Aw( Odll) tan 6 where d 
is the separation between the two waveguides, 0 is the 
laser frequency, and 1 is the cavity length. For a given 
wedge angle, the coupling loss is larger for a beam with 
larger effective cross section. Thus the coupling loss, 
1 -(Y, of Mode C increases more rapidly with the 
wedge angle than those of Modes I and II. The calcu- 
lated loss, ( 1 - a), as a function of wedge angle for 
various inter-element separation is shown in Fig. 8. For 
sufficiently large wedge angle, the difference in the 
coupling loss can eventually offset the difference in the 
modal gain. The calculated cross-over points, corre- 
sponding to the boundary of the phase locked and 
unlocked states, are plotted in Fig. 9 by the solid line 
with filled circles. In this calculation, the wavefunction 
of mode C is the eigen function of the composite 
waveguide and those of the mode I and II are approx- 
imated by the wavefunctions of the individual wave- 
guide. In the regime of small inter-element separation, 
the calculated detuning frequencies at the boundary of 
phase locking are remarkably close to the experimental 
values for small inter-element separations considering 
that there is no adjustable parameter in the calculation. 
The calculated boundary for large inter-element devi- 
ates from the experiment because the approximation of 
the wavefunctions of modes I and II by the wavefunc- 
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Fig. 9. Calculated detuning frequency for the strong coupling (filled 

circles) and weak coupling (triangles) regimes for comparison with 

the experimental data (open circles). The solid curve is calculated 

using coupled-oscillator equations. 

tions of the single element laser is no longer valid. This 
will be further discussed in the following paragraph. 

3.2. Weak coupling 

For large inter-element separation, the breaking of 
phase locking occurs at small detuning frequencies. 
The mode competition near the boundary involves the 
type of modes shown in Fig. 6. In the small detuning 
regime, the loss caused by the wave front tilt at the 
wedged mirror is negligible. The main effect of increas- 
ing detuning is to cause changes in the modal gain due 
to redistribution of field between the two elements. To 
calculate the modal gain, the effect of a small detuning 
frequency in the Fabry-Perot cavity is assumed to cause 
a steady-state effective mirror reflectivity, ?: in each 
branch given by 

(l-r)* 

y= 1 +r*-2r cos(2kd) ’ 
(3) 

where d is the cavity length, r is the reflectivity of the 
output coupler, k is the wave number. The y factor is 1 
for on resonance and is less than 1 for off resonance. 
The loss ( 1 - r) is then incorporated into the refrac- 
tive-index profile of the waveguide by adding 
6ni = ln( y) /4r to the imaginary part of the refractive 
index steps where r is the overlapping integral of the 
modal intensity with the gain medium. The modified 
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refractive-index profiles are then used for calculating 

the modal gains. For Mode C, the detuning results in a 
rapid decrease in the modal gain due to deviation from 
resonance in both branches. For Modes I and II, the 
effect of detuning is to shift the intensity toward the 

element that is closer to resonance, resulting a slower 
decrease in the modal gains with increasing detuning 

frequency. The calculated cross-over points are plotted 

by the solid line with triangles in Fig. 9. This calculation 
predicts a much smaller tolerance of detuning in closer 
agreement with the experimental measurement. Fur- 
thermore, the features of the modal patterns in the vicin- 

ity of the transition can also be explained by this 
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modeling. Fig. 10 shows the calculated near-field and 
far-field modal patterns of the operating modes when 
the separation is increased for a given wedge angle. 
The phase-locked mode has a contrast ratio 1 as shown 
in Fig. 10a. As the boundary is crossed, the onset of 
two independent asymmetric modes results in reduced 
contrast ratio, as shown in Fig. lob. For larger separa- 
tion, a three-lobed pattern occurs due to the intensity 
addition of two modes with highly uneven intensity 
distribution in the two elements as shown in Fig. 10~. 
For further increase in separation, a broader single- 
lobed profile is obtained as shown in Fig. 10d. 
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Fig. 10. Calculated modal patterns of near-field and far field of the dominant operating modes for various inter-element separations. The solid 

and dashed curves represent the eigen modes resonant with one of the elements of the composite waveguide. 
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In the present experiment, the beat frequency of two 
unlocked lasers has a short-term fluctuation of 1 MHz 
over a 1 ms period, corresponding to a relative temper- 
ature variation of 3 X lob4 K. The absence of phase 
locking for d > 600 pm can be attributed to the time- 
varying detuning which is comparable to the detuning 
tolerance. 

Finally, it is illuminating to compare the experimen- 
tal results with the usual predictions based on the equa- 
tions for the coupled-oscillators model. The equations 

for the coupled-oscillators model are 

dE, 
- = $ (N, -N&El + y [E2 sin(A+)] 
dt 

- 7 [E2 cos(A+)] , 

d& -= 
dt 

$ (N2 -N&& - y [E, sin(A4)] 

- y [E, cos(Aq6)] , 

(4) 

(5) 

(6) 

(7) 

(8) 

where Nj is the population inversion and Ei is the field 
amplitude of the individual lasers, and A+ is the phase 
difference of the two lasers. The other parameters are 
the differential gain g’, the photon lifetime rp, the com- 
plex coupling coefficient K= qn/mp, the threshold 
population inversion Nthr the pump rate P, the lifetime 
of the excited state rp, and the frequency detuning Aw. 
The parameters used are rs = 200 ps, rp = 1.2 ns, 
g’Nth= 5.13 X 109/s, P= 1.3P0. For an initial field of 
arbitrary amplitudes and relative phase and a given 
detuning frequency, the system is considered phase 
locked if, after periods of transient oscillations, the 
amplitude and the relative phase reach a steady state. 
The system is considered unlocked if the relative phase 
increases linearly with time, creating a beating phe- 

nomenon of two independently operating laslers. The 
locking range and locking dynamics are strongly influ- 
enced by the magnitude of rli and to a much less degree 
by rl,. If vi is neglected, the calculated boundary of 
phase locking for our experimental condition is five 
orders of magnitude smaller than the experimental val- 
ues. In the vicinity of the boundary, there also exists a 
region in which the laser amplitude and phase exhibit 
irregular oscillations. If 77i is set to be Agl2g where Ag 
is the difference of the numerically calculated modal 
gains of the symmetric and antisymmetric supermodes, 
the calculated boundary of stable phase-locking, rang- 
ing from 23 MHZ for 77i = 0.1023 at d = 300 pm to 3 
MHz for rli = 0.03 at d = 600 pm, plotted the solid 
curve in Fig. 9. Thus the calculated detuning frequen- 
cies of stable phase locking is one order of magnitude 
smaller than the experimental values. Furthermore, the 
coupled-oscillators equations predict eigen modes with 
nearly equal intensity distribution in the two branches 
and can not account for the observed complex modal 
behavior in the transition region. 

Our study shows that the breaking of the “phase- 
locked” mode is due to the onset of two independently 
operating sets of eigenmodes of the composite wave- 
guide at different frequencies. The system can not be 
characterized simply as a coupled two-oscillator sys- 
tem. The complex modal behavior in the vicinity of the 
boundary of phase locking also can not be synthesized 
simply by the coupled two-oscillator equations. This 
finding has a profound implication on the predictions 
of temporal instability based on the coupled-oscillator 
equations. The temporal instability as predicted by cou- 
pled rate equations can result in a temporal variation in 
the modal gains of the launched field to become either 
higher or lower than the steady state value. When the 
modal gain is momentarily lower than the steady state 
value, the onset of more favorable modes, which are 
not eigen modes of the coupled-oscillator equations 
with different frequencies, whose profile overlaps bet- 
ter with the gain profile can overpower the nonlinear 
dynamics predicted based on the deterministic model. 
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