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Lossless bowed strings have usually been thought to possess a motion discovered by Helmholtz in 
1863. However, it was shown [Acustica 44, 194-206 {1980)] by the author that a more 
complicated standing wave motion, the $ motion, exists on such strings provided both the bowing 
distance and bowing force are above certain minimum values. This paper explores S-motion 
harmonics which give arise to waveforms of considerable complexity on very thin strings. 
Equations are found which describe the experimentally determined waveforms as a function of 
bow position, bow velocity, and observation point. In the special case of square velocity waves at 
the bow point, the equations give quantized values for the bow/string sticking duration. That 
result agrees with Raman's [Proc. Ind. Assoc. Adv. Sci. 15, 1-158 {1918)] prediction. In general, 
however, the waveforms have rounded corners. 

PACS numbers: 43.75.De 

INTRODUCTION 

Earlier •'2 we have described studies of violin strings 
bowed on a monochord. The general transverse motion of a 
lossless string was found to be different from that described 
by Helmholtz. 3 We derived an expression which accounted 
well for the motion provided the bowing point lay more than 
5 cm from the bridge on a normal violin string {33 cm long) 
and the downward bowing force on the string exceeded a 
certain minimum value (the critical force). In essence, the 
motion expression consisted of a prominent sinusoidal com- 
ponent {S motion) superposed on the Helmholtz • motion. 
The period of the sinusoid is/3 (/3 is defined below). Perma- 
nent node points existed at the two ends of the string and a 
temporary, intermittent, node occurred at the bow. The 
expression was chosen to give continuity at the bowing point 
{in position and spatial derivative). This choice led to an in- 
verse relationship between bowing position and S-motion 
velocity amplitude. The fact that $ motion is not observed 
for small bowing distances can then be understood, at least 
qualitatively' the bow is unable to sustain the large kinetic 
energy resulting from the S-motion amplitudes. 

During the time interval a the transverse velocity was 
found to be 

V = vo ( COS(2yr) sin [ (1- •5)y] 1--•5) ]• sin y ]• 
and during time interval b, 

v (• cos[(r--0.5)2y] sin(6y}) • v = o /3 sin y ' 
Vo is the velocity of the bow (in absolute units). 
/3 is the dimensionless bow position, i.e., the ratio 

of the length Lo between the bridge and the bow 
point and the total length L of the string; 
0</•< 1. 

• is the dimensionless observation distance, i.e., 
the ratio of the length Lo between the bridge and 
the point of observation and the length L; 
0<•5< 1. 

y is rr//3. 

(la) 

(lb) 

r is the dimensionless time variable, i.e., the ratio 
of the time and the duration of the fundamental 

period of the oscillating string; 0 < r < 1. 
Intervalais - •5/2 < r < + •5 /2 and interval b is + •5/2 

< r < {1 -- •5/2). {Intervals a and b denote regions in the 
space-time diagram for traveling waves on the string as illus- 
trated in Fig. 15a, Ref. 1.) 

As mentioned above, these expressions apply when 
/3 > 0.18 and the bowing force exceeds the critical force. The 
critical force varies inversely 4 with/3 from a low value of 0.05 
N at/3 = 0.36 to 0.4 N at/3 = 0.18. 

As with other standing-wave phenomena, the $ motion 
must possess upper partials of its fundamental mode. Such 
modes of vibration should be characterized by {n -- 1) nodes 
between the bridge and the bowing point. This paper deals 
with the form of these, modes and their occurrence on real 

strings as well as on ideal strings. The latter topic connects 
harmonic $ motion to Raman's theory of bowed string mo- 
tion. 5 

I. APPARATUS 

Expression (1) was derived from velocity waveforms re- 
corded at several positions along the string. The records had 
to be measured at constant bow velocity, bow position, and 
bow force. For this purpose a bowing machine was devel- 
oped. A violin bow ran on horizontal tracks pulled by a servo 
controlled, printed armature, motor 6 which automatically 
alternated up- and down-bow strokes and kept a constant 
bow velocity of 9 cm/s. The bow hairs were squeezed to a 4- 
mm-wide bundle but, otherwise, the bowing conditions were 
similar to those in a normal violin. The monochord rested on 

a platform with adjustable height. The downward force on 
the monochord could be monitored by means of strain 
gauges. In order to bring out the different,modes of vibra- 
tion, we used a thin string of "rocket wire "7 with 0.16-mm 
diameter and 0.2-g/m mass. It had a length of 33 cm and 
frequency of 440 Hz. The string passed through the vertical 
field of a permanent magnet and the induced signal was fed 
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to a waveform recorder s for off-line plotting and analysis in 
the time domain. 

II. HARMONICS OF THE S MOTION 

For normal violin strings harmonics of the $ motion 
are, essentially, damped out and Eq. {1) adequately describes 
the motion ("normal $ motion"). However, our experimen- 
tal data show that Eqs. (2) and (3) must be used to describe 
the motion of thinner strings. For transverse deflection 

d= • d{n), 

d{n} = (•) F{n}( sin(2•/•-n) sin[{1 -- 6)•'n ] 2•r sin(•/n) 

d {n) = (•) F{n}( 6 {•' -- 0'5} , 

_ sin[2•/n{•- -- 0.5)] sin(?'6n)) 2•r sin0/n) ' 
and Eq. {3)for transverse velocity 9 

(2) 

{2a} 

(2b) 

v= • v(n), (3) 

v(n)=voF(n)(COS(2•'•'•sin[(1--6)•'n] 1--•.) (3a) sin0/n) /3 ' 

(6 cos[2•/n(•'--O. 5)]sin(•'6n!) (3b) v(n) = Vo F(n) ]3 13 sin0/n) ' 
Equations (la), (2a), and (3a) apply in the same interval as do 
Eqs. (lb), (2b), and 3(b), respectively. F(n)is the amplitude of 
the nth mode and f is the frequency of the fundamental 
string vibration. The F factors must be normalized to make 
the infinite sum • F(n) = 1. As required, the harmonics are 
characterized by additional temporary nodes with spacings 
equal to the distance between the bow and the bridge divided 
into n equal segments. These nodes exist only during the 
sticking period. String shapes and waveforms created by the 
addition of S-motion harmonics as in Eqs. (2) and (3) have the 
same continuity properties as in Eq. (1) discussed previous- 
ly. 1 

Harmonic $ motion can lead to vastly more complex 
waveforms than normal $ motion. Figure 1 shows a set of 
thin-string measurements at a bowing position of/3 = 0.418. 
Five terms in Eq. (3) [ F(1) = 1.7; F(2) = -- 1.3; F(3) = 1.0; 
F(4) = -- 0.7; F(5) = 0.3] were needed to give the fit in Fig. 
1. These waveforms are more difficult to match with Eq. (3) 
than previous measurements 1 because the present data are 
more highly dependent on the bowing position and the ob- 
servation points (the nodes are more closely spaced) and 
somewhat dependent on the bow force (which must exceed 
the critical values for each relevant harmonic). There are no 
adjustable parameters in normal $ motion but in harmonic $ 
motion the amplitudes F (n) are arbitrary. With this in mind, 
the data of Fig. 1 lend reasonable support to the predictions 
of Eq. (3). 

Often (but not always, as can be seen in Fig. 6) harmonic 
motion requires higher critical bow force than normal $ mo- 
tion. The dependence of $ motion amplitude on the bow 
force, qualitatively, resembles the behavior of normal mo- 
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FIG. 1. Velocity waveforms of a bowed rocket wire with a bowing position 
of/3 = 0.418 obtained at the fractional observation distance 6 indicated 
above each waveform. The vertical velocity scale is arbitrary but the same 
for all waveforms. The horizontal scale gives fractional time r where one 
unit (indicated by the bracket) equals one period of the fundamental string 
vibration. The dotted curves are measurements while the solid lines are giv- 
en by Eq. (3). 

0.1 0.2 0.3 0.4 0.5 
Bow Force (N) 

FIG. 2. Velocity amplitude (arbitrary units) of the sinusoidal part of the 
waveforms in $ motion of a rocket wire at/3 = 0.36. The two curves labeled I 
and II show the n = 1 and 2 components, respectively. 
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FIG. 3. Velocity amplitudes (arbitrary units) of $ motion (measured and 
calculated) for various bowing positions near/• = 2/5. Each measurement 
was taken at a string position where the amplitude was optimal, i.e., 6 
=/•/2. The solid lines are given by Eq. (3). For the sake of visual clarity the 

measurements have not been drawn. However, the data fell within one error 
bar of the solid line except near the poles. The arrows (labeled by their/• 
values) show the positions of some poles. 

tion. 4 For small forces the sinusoidal ampEtude increases 
with increasing bow force until a plateau is reached. (The 
force at the onset of the plateau was used • to define, opera- 
tionally, the critical force.) In particular, at a/• value of 0.36 
(see Fig. 2) the critical force for $ motion occurs at a force of 
approximately 0.15 N whereas a bow force of 0.35 N is re- 
quired to bring on harmonic $ motion. Equations (1), (2), and 
(3) describe the motion at the plateau but not in the transition 
region where the bow force is less. 

Asymptotically increasing amplitudes arise in normal $ 
motion when the bowing position approaches values of 
l• -- 1/m (rn -- 1,2,3,4...). Bowing points with/5' -- 1/m will 
be called poles. No $ motion can be found there experimen- 
tally and Eq. (1) implies infinite amplitudes with kinetic en- 
ergies the bow is unable to sustain. •o Similar conditions exist 
in the case of higher numbered modes. For example, the 
second harmonic of the $ motion has poles at/5' = 2/5, 2/7, 
2/9, etc., the third harmonic at/• -- 3/7, 3/8, 3/10, etc. [It is 
convenient to discuss ,6' values as proper fractions, e.g., 
l• = M/N (M and N are integ,ers); without loss of generality 
we shall only consider/5' values on one half of the string, i.e., 
M < N/2.] Consequently, the "l• versus maximum-ampli- 
tude" graph is considerably more complex here than for nor- 
mal $ motion. • The maximum amplitudes of some measur- 
able harmonics in the region 0.36 </5' <0.46 are shown in 
Fig. 3. [The F (n) parameter was adjusted to fit the data for 
each harmonic.] Again, if the string is bowed very near the 
pole of a harmonic, the string, as a whole, fails to respond. 
On the other hand, if the mode in question is highly damped, 
the motion is well behaved even at the pole. An extreme 
example is provided by the normal violin string where all 
higher modes are, practically, unobservable and the simple 
Eq. (1) give good results for any/5' % 1/m as demonstrated 
earlier. 12 

III. HARMONICS ON INFINITELY FLEXIBLE STRING 

On lossless strings without stiffness all harmonics are 
undamped. One might guess that the $ motion is impossible 
since any value of/5' can be thought of as lying close to a 
rational fraction M/N and, thus, close to poles for the M th 
harmonic, indeed close to all the (MK)th harmonics 
(K = 1,2,3,...). Nevertheless, $ motion may occur because, 
analytically, the amplitudes F(MK) can be made zero and, 
physically, this can be justified for all higher harmonics by 
the finite damping of any real string. Let us first consider 
certain, analytically simple, waveforms. Two cases with an 
infinite number of harmonics in Eq. (2) or (3) are of special 
interest. 

A. Square waveform at the bowing point 
. 

With • =/5' in Eq. (3) the waveform at the bowing point 
is obtained. If an infinite number of terms are included in Eq. 
(3) with 

F(n,square) = (-- 1) n+• 2 sin(•rpn). (0<p< 1), (4) 
•rpn 

the velocity waveform at the bow becomes rectangular, i.e., 
it has a constant velocity ( = Vo} during the sticking time and 
another constant velocity during the slipping time. The infi- 
nite set of parameters F(n} is thereby fixed and replaced by 
one arbitrary parameter p (but p < 1 }, defined by p/3 = slip- 
ping time at the bow point, i.e., the duration of the square 
wave at the bowing point. Clearly, ifp = I?M = p(M} the 
amplitudes F (MK, square} are zero. This is also true ifp is a 
multiple ofp(M }. With such p values the poles are removed. 
In other words, the slipping time is quantized for square 
waves. It should be noted that Eq. (4} is properly normalized 
so that •'= I F (n,x) = 1. In our model the string is assumed 
to be nondispersive and to have terminations which are per- 
feet reflectors. The square wave produced at the bowing 
point should therefore be expected to exist anywhere on the 
string in various superpositions. To see if the combination of 
Eqs. (3) and (4) gives square waves for 6 •/3 we must distin- 
guish between two classes of/3 values. 

{i}/3 = M/N, an irreducible rational number withM less 
than about seven. In this case computation shows that 
square waves are found everywhere on the string. For exam- 
ple, if/3- 4/9 the value of p may be chosen as either 1/4, 
2/4, or 3/4; this procedure makes every fourth term in Eq. 
{3} vanish, removing terms that would otherwise have been 
infinite. [Figure 4 shows the waveforms at the bowing point 
and at 6 = 1 / 15 when p = 1/4 with different truncations in 
the sum of Eq. {3}.] This class of/3 values exhausts most of the 
cases considered by Raman. s As will be discussed later, Ra- 
man's and our waveforms generally agree. 

{ii} Raman also included waveforms obtained at 
13 = r ñ e = M/N, where r is an irreducible rational number 
of the type discussed in (i} and e is a small number. •3 For 
example,/5' = (3/7 -+-e} might be considered equivalent to 
/3 = 0.433 = 433/1000 = M/N. Here Eqs. (2} and (4} do not 
give square waves even ifp is chosen (e.g., p = 200/433} so 
that the poles [i.e., the 433th, the 866th, ... terms in Eq. {3}] 
cancel. Large terms exist below the first pole [in this case: 
v(13}, v(29}, v(42},...] which cannot be removed by any choice 
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I Period 
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SOUARE N• $ 

SQUARE N• I0 
FIG. 4. Waveforms (arbitrary velocity units along the vertical direction and 
time along the horizontal) calculated according to Eq. (3) at bowing position 
]• -- 4/9 and measuring position •5 = 4/9. The summations in Eq. (3) have 
been terminated at the n values shown. 

ofp. In fact, the sum in Eq. (3) fails to converge. 
The large terms occur for n values that make the de- 

nominators in Eqs. (2)and (3) small, i.e., sin(ny)•0. This 
condition arises when ny = Qrr q- e (Q = 1,2,3,...) or, equiv- 
alently, n/•Q = ]5' __+ 1' (e andl' are small numbers). One finds 
these n values by searching for rational fractions n/Q that 
approximate the value of]5' and yet have n and Q less than M 
and N. The algorithm for such a search can be found in the 
theory of continued fractions. 

According to that theory TM a rational fraction ( ]5' in this 

case) can be expressed by a finite continued fraction' 

a(1) -I- 1 
1 

+ 
1 

a(3)+ 
1 

• (5) 

where a(1),a(2) .... ,a(k ) are positive integers called partial quo- 
tients. If only a( 1),a(2),...,a(l ) are included, one obtains the l th 
convergent. The convergents are, in fact, the desired ap- 
proximations ( ---- n/Q) to ]5'. The lowest order convergents 
are 

]5'(1) = l/a(1), 

]5' (2) = a(2)/[a(1)a(2) + 1], 

]5' (3)= [a(2)a(3)+ 1]/[a(1)a(2)a(3)+ a(1) + a(3)]. 

This implies that terms with n = 1, n =a(2), 
n = [a(2)a(3)+ 1] are large. [The first convergent gives a 
poor approximation, consequently, the denominator of the 
first term [v( 1 ) in Eq. (3)] is generally not close to zero. } If the 
irreducible fraction ]• = M/N, where M < N/2 < about 7, 
Eq. (5) becomes exactly equal to ]5' with only a few partial 
quotients. In that case all convergents are poor approxima- 
tions except for the last which corresponds to the lowest pole 
[which, of course, is removed ifp is chosen to be a multiple of 
p(M)]. In other words, for such ]5' values as 3/7, 3/8, 3/10, 
3/13; 4/9, 4/11, 4/13; 5/11, 5/13; 6/13 the waveform at the 
bowing point is a perfect square wave while the waveforms at 
other locations consist of line segments joined with sharp 
corners. On the other hand, if M and N are large, partial 
quotients arise which make the higher order convergents 

III. 

1/4 1/16 

(2+e)18 - • 

(a-e)/11 - •• 

4/13 
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5/18 
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FIG. 5. Transverse deflection (arbitrary units in the vertical direction) waveforms. The horizontal direction shows time scaled to give an oscillation period of 
the length shown by brackets under each column. Column I: Raman's (Ref. 5, Fig. 9)waveforms; column II: waveforms given by Eqs. (2) and (6) withp = 2/M 
where N and M are integers such that ]• -- N/M; column III: waveforms measured on rocket wire. 
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close approximations to/•. The numerators of these conver- 
gents give the n values of the very large terms in Eq. (3}. 

The values of a(n} can be obtained from • by use of the 
continued fraction algorithm. TM 

It follows that the string cannot carry square waves for 
every value of •. To enable comparison with Raman's re- 
sults, it is desirable to find a waveform (with selectable 
widths) that exists even when/• = r -+- e on a perfectly flexi- 
ble string. Sine waves satisfy this requirement. 

B. Sinusoidal,waveform at the bowing point 

Here we have 

F(n,sine} = (-- 1) n 2 sin(•rpn} . (0<p<•}, (6} 
•rpn(n:p: -- 1} 

with the term F(n = 1/p,sine} = 0 and with the same norma- 
lization as in Eq. (4}. Now the bowing point waveform alter- 
nates between the constant bow velocity during the full 
sticking time and a sinusoidally varying velocity during the 
slipping timep/•. (The sinusoid goes from its maximum val- 
ue through one cycle back to its maximum value in the time 
p/•.} Again, it is necessary to remove the poles: with 
= M/N, the (MK }th terms must be set to zero; this occurs 

when p = 2/M; 3/M, 4/M, etc. (If the string is bowed at the 
second harmonic,/• = 2/5,2/7,..., this sine wave coincides 
with the normal Smotion.} Here the minimum width, 2/• ?N, 
is twice the minimum width for square waves. This implies 
that the full width at half maximum of the shortest sine wave 

has the same duration as the square wave. This is demon- 
strated in Fig. 4 where the two top curves {sine wave with 
p = 2/4} have the same FWHM as the curve on the third line 
from the top (square wave with p = 1/4}. 

Figure 4 also shows the rapid convergence of Eq. (3} for 
sine waves. About five terms suffice to give smooth wave- 
forms. This is in contrast to the case of square waves where 
more than 100 terms are necessary. For sine waves one may 
put o (n > 5} = 0 with high accuracy and neglect poles caused 
by terms with n > 5. In that case p values are quantized for 
M•< 5 (where M/N =/• } but not for M > 5. 

In this manner we can find sine wave expansions of Eq. 
(3} when • = (r q- e} since the terms that were large in the 
case of square wave expansion (i.e., terms with M>> 5} now are 
negligibly small. Furthermore, the slipping duration p • is 
not quantized in that case. 

Our Eq. (2) may be used to calculate the 64 waveforms. 
For definiteness we take sinusoidal waveforms and p 
- 1/M. At Raman's "irrational" points, i.e.,/• = (r _+ e), p 

is chosen near the values that would be used at/• = r. These 
waveforms are in good agreement with the measurements 15 
and a comparison with a typical set of Raman's waveforms is 
shown 17 in Fig. 5. The only exception to the agreement is the 
third waveform from the top which will be discussed below. 

V. HARMONIC $ MOTION IN GENERAL 

In reality, as the data in Fig. 1 shows, the waveform at 
the bowing point {or, equivalently, at 6 = 1 --/• ) is neither a 
square wave nor a sine wave. The data of Krigar-Menzel and 
Raps 15 did not clearly show this and Raman, 5 simply, as- 
sumed that the waveforms were square at the bow point. 

V' VVVVVVV-V 
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0.3 

IV. COMPARISON OF RAMAN'S AND OUR 
WAVEFORMS 

In 1891 Krigar-Menzel and Raps •s measured 64 trans- 
verse deflection waveforms and subsequently Raman 5 pre- 
sented a theory of these waveforms based on geometrical 
constructions. The measurements gave a few rather sharp- 
edged waveforms but the majority were rounded. However, 
Raman's method assumed a square wave at the bowing point 
and all his results are sharp edged. Apart from this, there is 
good agreement between experiment and theory with re- 
gards to relative sizes and widths of the features in the wave- 
forms. Raman also noticed 16 the quantization ofp (called w 
in his work} at bowing points with/3 = M/N if M < 5. At 
these points Raman assumed p = 1/M in the waveforms. 

ß 3 

= 2 
E 

I. 

•0.24 0.26 0.28 

FIG. 6. Various measurements (dots and boxes)and calculations (solid lines) 
pertinent to the second waveform (from the top) of column III in Fig. 5. In 
all cases the vertical axes show transverse velocities proportional to the val- 
ues given by Eq. (3) when relevent F values are unity. 

2178 J. Acoust. Soc. Am., Vol. 73, No. 6, June 1983 Bo Lawergren: S motion on bowed strings 2178 

Downloaded 19 Mar 2013 to 146.95.253.17. Redistribution subject to ASA license or copyright; see http://asadl.org/terms



Occasionally our measurements give rather peculiar 
waveforms at the bowing point. The second waveform from 
the top in Fig. 5 (column III) is measured at a/3 value slightly 
above the/3 = 1/4 pole; each cycle shows 11 small peaks 
superposed on a ramp. The waveform can be generated by 
Eq. (2) ifone takesF(1) = F(n > 2) = 0 andF(2) = 1, i.e., the 
fundamental is suppressed. Figure 6 shows the correspond- 
ing velocity waveforms at •5 = 1/15 (11 peaks/cycle) and at 
the bowing point (a W shape during the slipping time). These 
results occur at a moderate bowing force (about 0.075 N). 
With larger force (about 0.11 N) the fundamental of the $ 
motion dominates as shown in the third waveform (from the 
top) in Fig. 6. The reason this happens can be learned from 
the two lower curves: at this point (/3 = 0.26) the harmonic 
(n = 2) of the $ motion can be elicited at a lower bow force 
than the fundamental (n = 1). 

VI. CONCLUSIONS 

Equations (2)and (3) account for all observed wave- 
forms produced by sufficiently large bow force (0.02 to 0.4 iV 
depending on the value of/3' ) and sufficiently large/3 ( > 0.18). 
Most violin strings are thick enough to prevent the forma- 
tion of harmonics in which case Eq. (3) reduces to Eq. (1). For 
more flexible strings the harmonics come into play. If a high- 
ly flexible string is bowed at/3 = M/iv, the (KM)th term in 
Eq. (2)or (3)(i.e., at the pole) becomes very large and the 
expansion in the equations fail to converge. $ motion may 
still be possible at such points if F (KM) = 0 in which case the 
pole is cancelled. (For real strings of some thickness this 
situation probably implies that all harmonics with n > M are 
damped out as well.) Very flexible strings permit high har- 
monics and they are, thus, difficult to bow at "rational" 
points (where/3 = M/iv with low M values). 

Another way to cancel the poles is to assume that the 
waveform is square (as Raman 5 did) but the F values must 
then be arranged in specific ways [i.e., according to Eq. (4)] 
that are unlikely to occur experimentally. Real strings are 

more likely to have rounded (e.g., sinusoidal) waveforms be- 
cause the harmonic content drops off fast [as n ¾3, see Eq. (6), 
provided p is not too small]. Both square and sinusoidal 
waveforms may give $ motion even when a very flexible 
string is bowed at a "rational point" ( 13 = M/N) if the dura- 
tion of the slipping time is quantized to values that are multi- 
ples of/3/N. 
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bowing force is very small. This results in Helmholtz motion [i.e., the non- 
sinusoidal part of Eq. (1)] with a missing (total string) harmonic, namely 
the one with a node at the bowing point, i.e., the mth harmonic. 

llSee Ref. 1, Fig. 5. 
•2See Ref. 1, Figs. 12 and 13. 
13We use Raman's (Ref. 5) notation of e instead of the usual e. 
•4G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers 

(Oxford U. P., London, 1938), Chap. 10. 
•50. Krigar-Menzel and A. Raps, "Ueber Saitenschwingungen," Berl. 

Klin. Preuss. Akad. Wiss., Sitzungsber. 44, 613-629(1981). 
•6See Ref. 5, Figs. 13-15. 
•7See Ref. 2, Fig. 9 which includes the waveforms of Raman, Ref. 5, Fig. 9. 
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