Semiclassical amplitudes: Supercaristics and the whisker map

N. T. Maitra1,* and E. J. Heller1,2

1Department of Physics, Harvard University, Cambridge, Massachusetts 02138
2Department of Chemistry, Harvard University, Cambridge, Massachusetts 02138

(Received 16 July 1999; published 13 December 1999)

The semiclassical approximation for a quantum amplitude is given by the sum of contributions from intersections of the appropriate manifolds in classical phase space. The intersection overlaps are just the Van Vleck determinants multiplied by a phase given by a classical action. Here we consider two nonstandard instances of this semiclassical prescription which would appear to be on shaky ground, yet the corresponding physical situations are not unusual. The first case involves momentum-space WKB theory for scattering potentials; the second is a propagator for the whisker map that arises in generic two-dimensional systems. In the former case two manifolds become asymptotically tangent, and the semiclassical formula needs to be uniformized in order to give a meaningful wave function. We give a uniformization procedure. In the latter case, there are an infinite number of intersections in phase space within a zone with the area of Planck’s constant (the limit of resolution for quantum mechanics), yet the semiclassical sum over all contributions is shown to be correct.

PACS number(s): 03.65.Sq, 05.45.Mt

\section{I. Introduction}

Semiclassical approximations to quantum mechanics are useful for physical insight as well as semiquantitative results. Consider the computation of a quantum amplitude of the form \(|\langle \phi_2 | \phi_1 \rangle|\) (e.g., if \(|\phi_2\rangle = |x\rangle\) and \(|\phi_1\rangle = e^{-i\xi/\hbar}|x'\rangle\); this is the coordinate space propagator). The semiclassical approximation for such a quantum amplitude is produced from classical objects and Planck’s constant \(\hbar\); it has the form \(\Sigma \sqrt{\rho} e^{iS/\hbar}\), where the sum goes over classical paths with boundary conditions determined by the two states in question. The phase \(S\) is the appropriate classical action for the classical path, and the weighting \(\rho\) is a classical probability density together with any Maslov factors arising from caustics encountered by the path \[1\]. This form emerges out of the stationary phase evaluation of Feynman path integrals where the stationary paths are classical trajectories; they dominate the path integral in the \(h \rightarrow 0\) limit. The validity of the semiclassical sum hinges on the differences in action between the different contributions being “large” compared with Planck’s constant \(\hbar\). When this is not the case, the semiclassical approximation breaks down.

In this paper we study two situations which, to our knowledge, have not been discussed before in the literature, but the physical situations they represent arise quite generally. The first case (Sec. II) is the semiclassical energy eigenfunction (WKB) in momentum-space for potentials which are asymptotically constant, as in scattering systems. In phase space, the momentum manifold is asymptotically tangent to the energy manifold over an infinite range. A uniformization needs to be performed in order to give a reasonable approximation to the quantum amplitude. We call this a supercaustic to distinguish it from an ordinary caustic, which is the simple tangency of the manifolds that occurs when stationary phase points coalesce and the action difference becomes smaller than \(\hbar\). In the second case (Sec. III), there are an infinite number of semiclassical contributions converging together exponentially within an area of \(\hbar\) in phase space. Planck’s constant \(\hbar\) sets a lower limit on the size of structure in classical phase space that quantum mechanics can resolve, yet the primitive semiclassics turn out to work very well with no corrections. We show why this is the case.

\section{II. Uniformization of a Supercaustic}

When finding semiclassical energy eigenfunctions in a given representation (e.g., \(x\) or \(p\)), the sum discussed above goes over all the phase-space intersections of the constant energy manifold with the representation. This semiclassical (or WKB) wave function built on the Van Vleck determinants and classical actions in general provides a good approximation to exact wave functions, and solves Schrödinger’s equation to order \(\hbar\). An important exception occurs at caustics.

It is useful to consider classical phase-space diagrams, where the quantum states in question are represented by manifolds \[2\]. The quantum states are represented in phase space as lines of finite thickness, appropriate to the successive contours of fixed canonical variables (such as the action). The area of the intersections of two sets of such manifolds is then proportional to the Van Vleck prefactor in the semiclassical sum, which is just the classical probability density given the initial and final conditions; the action line integral along the manifold is in the phase \(S\) \[3\].

Consider the coordinate representation of a harmonic-oscillator eigenstate. Figure 1 shows a constant energy contour of energy \(E\) for a harmonic-oscillator potential in one dimension. The semiclassical coordinate space energy eigenfunction is the sum of contributions from each of the two intersections of the shaded vertical line representing \(x\), with the circle corresponding to constant energy. These intersections represent the two classical “roots” with momenta \(p(x) = \pm \sqrt{2m(E - V(x))}\). For \(x\) further to the right the intersections become closer, eventually coalescing (where the
where c converges to a cusp above, where the projection of the energy contour onto a line in momentum space has its own divergence problems elsewhere: not only may we have the type of caustic encountered near the turning point. Hence a uniformized semiclassical wave function, valid further away, may arise when the force is zero and the denominator in Eq. (2) vanishes. The exact solution in momentum space for a globally flat potential is a δ function, $\delta(p \pm \sqrt{2mE})$; this indicates that the exact eigenfunction for an asymptotically flat potential should also diverge. However, as we shall see shortly, the singularity in the WKB solution is quite incorrect.

Caustics of the simpler type have been well studied in position space. The potential may be approximated linearly near the turning point and there the (Airy function) solution found exactly; the WKB solution, valid further away, may then be ’’glued’’ smoothly to the exact solution near the turning point. Hence a uniformized semiclassical wave function valid everywhere may be obtained. More elaborately, there are uniformization techniques which involve a modification of the form of the WKB solution motivated by the exact solution near the turning point. Such methods give

\[\psi_{\text{WKB}}(p) = \frac{1}{\sqrt{-V'(x(p))}} e^{i(h \hbar)/2m} \int dp' \psi_w(p') \rho(p'), \]

where

\[x(p') = V^{-1}(E - p'^2/2m), \]

and V^{-1} is the inverse of the potential. (We note that V^{-1} is in general a multivalued function; the branch chosen in Eq. (3) is determined by the branch to which the classical contour corresponding to the semiclassical state we are describing belongs. For example, for a potential barrier centered at $x = 0$ and for an energy below the barrier top, the positive (negative) branch choice of $x(p)$ gives a semiclassical state which lives on the right (left) side of the barrier (see Fig. 2).

Caustics in momentum space, of the ordinary or super type, arise when the force is zero and the denominator in Eq. (2) vanishes. The exact solution in momentum space for a globally flat potential is a δ function, $\delta(p \pm \sqrt{2mE})$; this indicates that the exact eigenfunction for an asymptotically flat potential should also diverge. However, as we shall see shortly, the singularity in the WKB solution is quite incorrect.

The momentum representation for p intersecting in the same region does so at a high angle, and does not suffer a caustic. However, momentum space has its own divergence problems elsewhere: not only may we have the type of caustic above, where the projection of the energy contour onto a line of constant momentum is parallel (dotted line in Fig. 1), but we may also encounter a contour which slowly asymptotes to a p state (Fig. 2) and remains almost parallel for an infinite extent along the contour. We shall call this more severe type of caustic a ‘’supercaustic.’’

The WKB wave function in p space, obtained either by a stationary phase Fourier transform of the position space wave function to momentum space or by solving Schrödinger’s equation to order \hbar directly in momentum space, is

\[\psi_{\text{WKB}}(p) = \frac{1}{\sqrt{-V'(x(p))}} e^{i(h \hbar)/2m} \int dp' \psi_w(p') \rho(p'), \]

where

\[x(p') = V^{-1}(E - p'^2/2m), \]

and V^{-1} is the inverse of the potential. (We note that V^{-1} is in general a multivalued function; the branch chosen in Eq. (3) is determined by the branch to which the classical contour corresponding to the semiclassical state we are describing belongs. For example, for a potential barrier centered at $x = 0$ and for an energy below the barrier top, the positive (negative) branch choice of $x(p)$ gives a semiclassical state which lives on the right (left) side of the barrier (see Fig. 2).

Caustics in momentum space, of the ordinary or super type, arise when the force is zero and the denominator in Eq. (2) vanishes. The exact solution in momentum space for a globally flat potential is a δ function, $\delta(p \pm \sqrt{2mE})$; this indicates that the exact eigenfunction for an asymptotically flat potential should also diverge. However, as we shall see shortly, the singularity in the WKB solution is quite incorrect.

Caustics of the simpler type have been well studied in position space. The potential may be approximated linearly near the turning point and there the (Airy function) solution found exactly; the WKB solution, valid further away, may then be ‘’glued’’ smoothly to the exact solution near the turning point. Hence a uniformized semiclassical wave function valid everywhere may be obtained. More elaborately, there are uniformization techniques which involve a modification of the form of the WKB solution motivated by the exact solution near the turning point. Such methods give
eigenfunction. This is followed by the construction of a uni-

f "connection formulas" between classically allowed and for-

bidden regions. The reader is referred to the review by Berry

and Mount for details of this [4] and references therein. The

resulting uniformized wave function satisfies Schrödinger's

equation to order \(h \), yet does not have the divergence pro-

lems of the WKB solution, i.e., it is uniformly valid in \(x \). An

analogous procedure in momentum representation can uni-

formize the ordinary type of caustic (Fig. 1) there.

The main result of this section is the uniformization of the

momentum-space supercaustic associated with potentials

which exponentially decrease asymptotically. In Sec. II A we

introduce the potentials and demonstrate the incorrect diver-

gence of the \(p \)-space WKB wave function at the supercaustic

by calculating to order \(h^2 \) the difference between the true

Hamiltonian and the Hamiltonian for which \(\phi_{\nu \kappa b} \) is an

exact eigenfunction. This is followed by the construction of a

uniform semiclassical wave function for these potentials (Sec.

II B). We show for the Eckart barrier how our uniformization

compares to the exact eigenfunction, by calculating explicit-

ly to order \(h^2 \) the difference between the Hamiltonian for

which the uniformized wave function is exact and the origi-

nal wave function.

A. Supercaustic of an exponentially decreasing potential

Potentials of the form

\[
V(x) = V_0 1 - \left(\frac{1 - e^{-ax}}{1 + ce^{-ax}} \right)^2,
\]

(4)

where \(0 \leq c \leq 1 \), of which the Morse \((c=0)\) and Eckart \((c=1)\) potentials are special cases (Fig. 3), possess super-

causics in momentum space at \(p = \pm \sqrt{2mE} \). [We point out in

passing that, for \(E \geq V_0 \), the simpler type of caustic also

exists: at \(p = \pm \sqrt{2m(E-V_0)} \). \(V'(x(p))=0 \) (the classical

particle is at \(x=0 \) and the projection of the energy contour

on to the \(p \)-axis is tangential).]

We investigate the error in the WKB solution in

momentum-space at the supercaustic. We need to compute

the effect of the Hamiltonian on wave function (2),

\[
\left[\frac{p^2}{2} + V(i\hbar \frac{d}{dp}) - E \right] \phi_{\nu \kappa b}(p),
\]

where we take mass \(1 \). In momentum representation it is the

kinetic term that is trivial (i.e., multiplicative) at the expense

of the potential term which is now a differential operator.

Momentum space is more complicated than coordinate

space, where the kinetic term is only a second-order deriva-

tive (and the potential term is simply multiplicative). We

evaluate the action of the potential term on the WKB wave

function order by order in \(\hbar \) in the following way. We first

expand \(V(i\hbar (d/dp)) \) in a Taylor series of the form

\[
\begin{align}
V(0) + i\hbar V'(0) \frac{d}{dp} &- \hbar^2 \frac{V''(0)}{2} \frac{d^2}{dp^2} \\
- i\hbar^3 \frac{V'''(0)}{6} \frac{d^3}{dp^3} &+ \hbar^4 \frac{V''''(0)}{24} \frac{d^4}{dp^4} \cdots,
\end{align}
\]

(5)

and operate with the series truncated say to four or five terms

on wave function (2). Terms of the same order in \(\hbar \) are

collected; of course, typically each differential contributes to

every order. At each order we find we have the first few

terms of a Taylor series of a certain function; these functions

are then taken to represent the result of \(V(i\hbar (d/dp))\phi_{\nu \kappa b}(p) \) at the corresponding order in \(\hbar \). We find

\[
V(i\hbar \frac{d}{dp}) \phi_{\nu \kappa b}(p) = [V(x(p)) + \hbar^2 h(p) + O(\hbar^3)] \phi_{\nu \kappa b}(p),
\]

(6)

where

\[
h(p) = \frac{x'(p)^2 V'''(x(p))}{8} - \frac{x'(p) V''(x(p))}{6}
\]

\[
- \frac{3V''(x(p))^2 x'(p)^2}{8 V'(x(p))^2} + \frac{V'(x(p))^2 x''(p)}{4 V'(x(p))}
\]

\[
+ \frac{V'''(x(p)) V''(x(p)) x'(p)^2}{2 V'(x(p))},
\]

(7)

\(x(p) \) is given by Eq. (3), \(V(x(p)) = E - p^2 / 2 \), and the prime

indicates differentiation with respect to the argument. Then,

with \(H = p^2 / 2 + V(i\hbar d/dp) \), we have

\[
(H-E) \phi_{\nu \kappa b}(p) = \hbar^2 h(p) \phi_{\nu \kappa b}(p) + O(\hbar^3).
\]

\(h(p) \) is thus, to lowest order in \(\hbar \), the error in the

momentum-space WKB approximation of an energy eigen-

function.

Let us consider this function for potentials which, at large

\(x \), go like \(W_x e^{-ax} \) [e.g., for potentials (4), \(W_x = 2V_x(c + 1) \)]. Then, as \(p \to \pm \sqrt{2E}, \ h(p) \) diverges. This is the mo-

mentum which a classical particle has asymptotically, that is,

in the region where the potential becomes flat (and zero).

The exact \(p \)-space wave function does indeed approach

\(\delta \)-function behavior here; although the WKB wave function

also blows up, it very poorly represents this divergence as is

evident in the blow-up of the difference Hamiltonian \(h(p) \).

In classical phase space this is where the constant energy
We shall first find its exact eigenstates in configuration space, and then calculate the exact Fourier transform to momentum space. We show $h(p)$ for the Eckart barrier, $V(x) = 2 \tanh^2 x$, for $\phi_{\text{wkb}}(p)$ at energy $E = 1.5$. The dashed lines indicate the $p = \pm \sqrt{2E}$ asymptotes. This corresponds to the dashed line in Fig. 2, and is where the potential becomes flat.

manifold asymptotes to a p eigenstate, and this is what we refer to as a supercaustic. In Fig. 4 we plot $h(p)$ for an Eckart barrier.

B. Uniformization

We saw above that momentum-space WKB theory fails in the asymptotic region of the potential (i.e., where the potential flattens out). The first step in uniformization is to find the exact energy eigenfunction in momentum representation of the Hamiltonian in this region:

$$H_{\text{asy}} = p^2/2 + W_o e^{-ax}.$$

We shall first find its exact eigenstates in configuration space, and then calculate the exact Fourier transform to momentum space. Performing the change of variable $z = (i2\sqrt{2W_o}/\hbar a)e^{-ax/2}$ in Schrödinger’s equation

$$\left(-\frac{\hbar^2}{2} \frac{d^2}{dx^2} + W_o e^{-ax} - E\right) \psi_{\text{asy}}(x) = 0$$

yields Bessel’s equation of order $\nu = i2\sqrt{2E}/\hbar a$:

$$\left(\frac{d^2}{dz^2} + \frac{1}{z} \frac{d}{dz} + \left(1 - \frac{\nu^2}{z^2}\right)\right) \psi_{\text{asy}}(z) = 0,$$

with solution

$$\psi_{\text{asy}}(x) = N K_{\nu i\hbar/2a\hbar} \left(\frac{2\sqrt{2W_o}}{\hbar a} e^{-ax/2}\right).$$

$K_{\nu}(z)$ is MacDonald’s function of order ν [5]. This has the correct behavior for $x \to \infty$, where ψ exponentially decays. N is a normalization constant; choosing

$$N = \frac{2}{\pi} \left(\frac{1}{2E}\right)^{1/4} \sinh \left(\frac{2\sqrt{2E} \pi}{\hbar a}\right) \Gamma\left(1 + i \frac{2\sqrt{2E}}{\hbar a}\right)$$

gives unit incoming flux from the right; that is,

$$\psi_{\text{asy}}(x \to \infty) \to \left(\frac{1}{2E}\right)^{1/4} \left(e^{-i\sqrt{2E}x/\hbar} + p e^{i\sqrt{2E}x/\hbar}\right),$$

where $|r| = 1$. This can be readily verified by the property (see Ref. [5])

$$K_{\nu}(z) \to \frac{\pi}{\Gamma(1-\nu)} \left(\frac{z}{2}\right)^{\nu-1/2} \Gamma(\nu + 1/2),$$

$\gamma(\nu)$ is the γ function:

$$\gamma(\nu) = \int_0^\infty e^{-t-t^{1/2}} dt,$$

By Fourier transform we obtain the solution in momentum space,

$$\phi_{\text{asy}}(p) = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} e^{-ipx} \psi_{\text{asy}}(x) dx = \frac{N}{4\sqrt{2\pi\hbar}} e^{(-ip/\hbar a)/(2W_o/\alpha^2\hbar^2)}$$

$$\times \Gamma\left(\frac{i}{\hbar\alpha}(p + \sqrt{2E})\right) \Gamma\left(\frac{i}{\hbar\alpha}(p - \sqrt{2E})\right),$$

where we used the integral expression (see Ref. [5]) $K_{\nu}(z) = \frac{1}{2}(z/2)^\nu \int_0^\infty e^{-t-t^{1/2}} t^{\nu-1} dt$ for $|\arg(z)| < \pi/4$. This is the exact momentum-space eigenfunction for the Hamiltonian $p^2/2 + W_o e^{-ax}$. As expected, the semiclassical limit of the exact solution (11) yields the p-space WKB solution for this Hamiltonian: noting that

$$\Gamma(z \to \infty) \to e^{2i\alpha z - z - (1/2)(1/2 + 1/2)ln2\pi},$$

we find that, as $\hbar \to 0$,

$$\phi_{\text{asy}}(p) \to \frac{N\alpha}{4\sqrt{2\pi\hbar^2} e^{-\pi\alpha^2/\hbar^2}} \phi_{\text{asy,wkb}}(p),$$

where

$$\phi_{\text{asy,wkb}}(p) = \frac{1}{\sqrt{-V'(x(p))}} \exp\left(-\frac{i}{\hbar} \int_0^p \frac{1}{V(x')} dx'\right)$$

$$= \sqrt{\frac{1}{\alpha(E - p^2/2)}}$$

$$\times \exp\left[-\frac{2i}{\hbar\alpha} p - \sqrt{\frac{E}{2}} \ln\left(\frac{p + \sqrt{2E}}{p - \sqrt{2E}}\right)^{1/2}\right] \times \sqrt{\frac{E}{2}} i - \frac{p}{2} \ln\left(\frac{E - p^2/2}{W_o}\right).$$

Equation (11) is an exact solution in the region where the WKB solution for potentials of the form of Eq. (4) diverges. This exact solution for the exponentially decreasing potential is what we need for the uniformization of the supercaustic of these potentials. We would like our uniform semiclassical wave function to satisfy Schrödinger’s equation up to order...
and have the correct blow-up behavior near \(p = \pm \sqrt{2E} \), so that the error in being an exact energy eigenfunction is everywhere finite and of order \(\hbar^5 \) (and higher). Below, we shall show that this can be achieved by multiplying Eq. (11) by well-behaved WKB factors which correct for the difference between the original potential and the exponentially decreasing one on which the uniformization is based. This accounts for the behavior away from the supercaustic. We hope the following will clarify what is meant by this.

The general potential (4) has the exponential asymptotic behavior

\[
V(x \to \infty) \to 2V_o(c+1)e^{-ax} := V_{asy}(x). \tag{14}
\]

We observe that the classical position for the exponentially decaying potential \(V_{asy}(x) \) may be written

\[
x^{asy}(p) = -\frac{1}{\alpha} \ln \left(\frac{E - p^2/2}{2V_o(c+1)} \right),
\]

and, for this potential,

\[
V'_{asy}(x(p)) = -\alpha(E - p^2/2).
\]

Now, the classical position as a function of momentum for the \textit{general} potential (4) is

\[
x(p) = -\frac{1}{\alpha} \ln \left(\frac{E - p^2/2}{2V_o(c+1)} \right) - \frac{1}{\alpha} \ln \left(\frac{2(c+1)}{1+c} \sqrt{\frac{1 - \frac{E - p^2/2}{V_o}}{1 - c^2 \left(1 - \frac{E - p^2/2}{V_o} \right)}} \right)
= x^{asy}(p) + x_{extra}(p), \tag{15}
\]

and the derivative of the potential is

\[
V'(x(p)) = -\alpha(E - p^2/2) \left(\frac{2(c+1)}{1+c} \sqrt{\frac{1 - \frac{E - p^2/2}{V_o}}{1 - c^2 \left(1 - \frac{E - p^2/2}{V_o} \right)}} \right)
= V'_{asy}(x(p))x'_{extra}(p). \tag{16}
\]

The sum and factorization properties in Eqs. (15) and (16) respectively, enable us to write the \(p \)-space WKB wave function for the general potential as the product

\[
\phi_{wkb}(p) = \phi_{asy,wkb}(p) \times \frac{1}{\sqrt{V'_{extra}(p)}} e^{-(ih)\int x_{extra}(p') dp'}, \tag{17}
\]

where \(\phi_{asy,wkb}(p) \) is as in Eq. (13) with \(W_o = 2V_o(c+1) \). We can now assert the uniformization for potentials of form of Eq. (4) is

\[
\phi_{unif}(p) = N' \exp \left[-\frac{ip}{\hbar \alpha} \ln \left(\frac{4V_o(c+1)}{\alpha^2 \hbar^2} \right) \right]
\times \Gamma \left(\frac{i}{\hbar} \left(p + \sqrt{2E} \right) \right) \Gamma \left(\frac{i}{\hbar} \left(p - \sqrt{2E} \right) \right)
\times \frac{1}{\sqrt{V'_{extra}(p)}} e^{-(ih)\int x_{extra}(p') dp'}, \tag{18}
\]

where we have replaced the WKB solution for the exponential potential with the exact solution there from Eq. (11). This wave function has the correct blow-up behavior as \(p \to \pm \sqrt{2E} \) (the extra WKB factors tend to 1 (up to a phase) in this limit) and, as \(\hbar \to 0 \), this reduces, by construction, to the WKB wave function. The WKB factors are well-behaved semiclassical objects: the divergent part of the semiclassics has already been extracted and replaced by an exact solution for the asymptotic region. This solution is then modified by benign WKB factors accounting for the difference between the true potential and the exponential.

The final check, of course, is to calculate the deficit of \(\phi_{unif} \) as an eigenfunction [following the procedure as in obtaining Eq. (6)]. That is now finite is clear, from the above comments. As an example, we consider the Eckart barrier \(V(x) = V_o \operatorname{sech}^2(x) \). Equation (19) gives

\[
\phi_{unif}(p) = \exp \left[-\frac{ip}{\hbar} \ln \left(\frac{2V_o}{\hbar^2} \right) \right] \Gamma \left(\frac{i}{\hbar} \left(p + \sqrt{2E} \right) \right)
\times \Gamma \left(\frac{i}{\hbar} \left(p - \sqrt{2E} \right) \right) \frac{1}{\sqrt{V_o}} \left(1 - \frac{E - p^2/2}{V_o} \right)^{1/4}
\times \exp \left[-\frac{i}{\hbar} \int_0^p \ln \left(\frac{1}{2} + \sqrt{1 - \frac{E - p'^2/2}{V_o}} \right) dp' \right], \tag{19}
\]

where the \(R \) superscript denotes the state at energy \(E \) that
FIG. 5. This plot of $h_{\text{unif}}(p)$ shows how much the uniformized semiclassical wave function at energy $E=1.5$ for the Eckart barrier $2 \text{sech}^2 x$ misses being an energy eigenfunction to order \hbar^2. Notice that the function is finite and “small” in the physical domain $|p| \approx \sqrt{2E}$ (between the dashed lines), unlike the case for the WKB wave function (Fig. 4).

lives on the right-hand side of the barrier, corresponding to the positive branch of the V^{-1} function (see also Fig. 2). The state on the left, is given by the complex conjugate

$$\phi^L_{\text{unif}}(p) = \phi^R_{\text{unif}}(p).$$

$\phi_{\text{unif}}(p)$ stems from uniformization based on the e^{+ax} potential. To calculate the action of the Hamiltonian on Eq. (5), we proceed as in Eq. (5). It is easiest, however, to perform the differentiation operations on the 1 functions within the integral expression for the 1 function [Eq. (10)], and then integrate the result at the final stage. In particular,

$$\langle x | \mathcal{A} | \psi \rangle = \int d\mathcal{A} \mathcal{A} \left(\frac{i}{\hbar} \frac{d}{dp} \mathcal{A} \right) \eta \left(\mathcal{A} \right) \eta^{-1} \mathcal{A} = \int_0^\infty \left(-\frac{1}{2} \ln t \right)^n e^{-t (i/2 \hbar)} (p \mp \sqrt{2E}) dt \cdot \frac{d^n}{dp^n} \left(\frac{i}{\hbar} \frac{d}{dp} \right) \phi_{\text{unif}}(p),$$

where $\phi_{\text{unif}}(p)$ is a long expression (a sum of about 50 terms) depending on V_0, E, and p. $h^2 \phi_{\text{unif}}(p)$ is the perturbation which turns off the quantum phenomenon of barrier tunneling (to order \hbar^2): the semiclassical wave function $\phi_{\text{unif}}^{R(L)}$ lives only on the right (left) side of the barrier and is an eigenstate of $H-\hbar^2 h_{\text{unif}}$ to order \hbar^2. In this sense the effect of h_{unif} is to suppress tunneling to the left (right) up to order \hbar^2. We note that a complementary concept of turning off above-barrier reflection was discussed in Ref. [6]. In Fig. 5 we plot $h_{\text{unif}}(p)$ for energy $E=1.5$ in the Eckart barrier

2 sech$^2 x$ (cf. the corresponding quantity for the WKB function, Fig. 4).

III. SEMICLASSICAL QUANTIZATIONS OF THE WHISKER MAP

We continue our investigation of semiclassical amplitudes with the whisker map. Arnold first coined the term “whisker” for branches of the separatrix [7]. The separatrix is one of the most common structures in the phase space of generic systems, and it is the birthplace of chaos in near-integrable systems. Near a resonance in a two-degrees-of-freedom near-integrable system, one can transform to a pair of approximate “slow” action-angle variables and a pair of approximate “fast” action-angle variables. To first order, the Hamiltonian in the slow variables is a pendulum, and a closer look reveals a chaotic layer around the pendulum separatrix. The whisker map describes the motion in this chaotic layer.

Zaslavskii and Filonenko [8] originated this mapping; it was later extensively studied by Chirikov [9]. Specifically, it is the mapping of the fast action and angle when they pass through a surface of section erected at the hyperbolic point of the (slow variable’s) pendulum. One obtains

$$I' = I - k \sin \theta, \quad \theta' = \theta + \lambda \ln \left(\frac{c}{I' - I_o} \right) \quad (\text{mod } 2\pi).$$

We refer the reader to the literature [9,10] for details and for the identification of the parameters k and λ in terms of the original parameters of the two-dimensional Hamiltonian. There are essentially two independent parameters in the classical whisker map: λ, which shears the angle before it is wrapped back to the domain $[0,2\pi)$, and k, which determines the jumps in action. I_o simply translates in action space, and c can be absorbed into a scaled action. In our numerical work c is taken to be 1.

A particularly interesting feature of this mapping, arising from choosing an $I-\theta$ surface of section at fixed slow angle, is that much occurs in just one iteration: in the infinite time it may take to return to the surface of section erected at the hyperbolic point of the slow variable pendulum, the fast angle θ may undergo an infinite number of oscillations. The slightest perturbation throws the system even after just one iteration, since even the smallest perturbation can have a large effect in the nearly infinite time it takes to come back to the pendulum’s hyperbolic point.

In this section we compute matrix elements of the quantum and semiclassical one-step evolution operator U in the angle and action bases. We note that in Ref. [11] a full quantization in the action representation was given. Here our interest is in a semiclassical study where we find a remarkable classical phase-space structure. For example, in an angle representation the infinite number of oscillations alluded to above gives rise to an infinite number of intersections of the relevant phase-space manifolds, which approach each other exponentially closely in classical phase space. Semiclassically we know we must add the infinitely many contributions; Quantum mechanics smears over structure below the
scale of Planck’s constant \hbar, so the question might arise as to the relevance of all the terms, or whether they are semiclassically legitimate, well-separated stationary phase points. We shall discuss these and other semiclassical issues shortly; first, we discuss the full quantization in angle representation and in action representation.

A. Quantization

A “Hamiltonian” which gives rise to the whisker map is

$$H = \lambda(I - I_\sigma) \left(\ln \frac{c}{I-I_\sigma} + 1 \right) - k \cos \theta \sum_n \delta(t - nT).$$

Integrating the equations of motion $\dot{\theta} = \partial H / \partial I$, $\dot{I} = - \partial H / \partial \theta$ over a period T yields the whisker map [Eq. (21)]. As for any map, the choice of Hamiltonian is not unique. For example, having the “potential” term acting first for a finite fraction of period T and then the “kinetic” term for the remaining fraction also results in the whisker map equations. This nonuniqueness is not surprising considering that the map only “sees” the system once each period, and not in between. The quantum evolution operator over one period (Floquet operator), $U = T \exp(-i\int_0^T H \, dt)$ (with T denoting positive time ordering) is unique as we would expect: all choices of H give the operator

$$U = \exp \left(-i \lambda (I - I_\sigma) \left(\ln \frac{c}{I-I_\sigma} + 1 \right) / \hbar \right) e^{i k \cos \theta / \hbar},$$

where θ and I are now of course quantum operators. The phases ν of the eigenvalues $e^{-i\pi \nu}$ of the unitary operator U are called quasienergies and are defined mod 2π. The corresponding quasienergy eigenstates are also called Floquet states.

The quantum probability amplitude for being at angle θ_f after one iteration of the whisker map, having started at θ_i, is given by the propagator

$$K(\theta_i, \theta_f) = \sum_n \langle \theta_f + 2\pi n | U | \theta_i \rangle$$

$$= \sum_n \int d\theta \frac{1}{2\pi \hbar} e^{i \lambda (\theta_f - \theta_i + 2\pi n) / \hbar}$$

$$\times \exp \left(-i \lambda (I - I_\sigma) \left(\ln \frac{c}{I-I_\sigma} + 1 \right) / \hbar \right)$$

$$+ ik \cos \theta_i / \hbar),$$

where the sum over n is a sum over domains in angle resulting from taking mod 2π in the map. We have used the closure relation $\int d\theta |\langle \theta | \rangle = 1$ and the bracket $\langle \theta | \theta \rangle = \exp(i \theta) / \sqrt{2\pi \hbar}$ which follows from action and angle being canonically conjugate variables with commutator $[\theta, I] = i\hbar$.

The number of quantum states is $N = 2I_c / \hbar$ which allows each state an area of Planck’s constant \hbar in phase space. The closure relation in action becomes $\sum_{j = -N/2}^{N/2} \langle I_j | I_j \rangle$ where $I_j = j\hbar$ for example (or $j\hbar + \text{integer}\hbar$). Finally, we replace $\langle 1 / (2\pi \hbar) \rangle$ with $\sqrt{\hbar / (2I_c)}$ as the normalization factor, and $f d\theta$ with $\hbar \Sigma_j$, to obtain

$$K(\theta_i, \theta_f) = \frac{\hbar}{2I_c} e^{i k \cos \theta_i / \hbar}$$

$$\times \sum_{j = -N/2}^{N/2} \exp \left(i j (\theta_f - \theta_i) - i \lambda (I - I_\sigma) / \hbar \right)$$

$$\times \left(\ln \frac{c}{I - I_\sigma} + 1 \right) / \hbar + ik \cos \theta_i / \hbar),$$

where $[\ldots]_+$ rounds down (up) to the nearest integer. θ_f and θ_i also take on quantized values: only N angle states may fit into 2π, so each allowed state has support integer $\pi \hbar / I_c$. Choosing states θ_i to be centered at $p \pi \hbar / I_c$ gives periodic boundary conditions in action. [Note that in Eq. (25) and in any following equations, i, which does not appear as a subscript, is $\sqrt{-1}$.] We observed in the classical map that I_σ acts only as a translation in action, shifting the entire phase space by a constant. Indeed, I_σ plays the same role here: if we rotate our basis to $| \tilde{\theta} \rangle = e^{-i\theta \hbar / \hbar} | \theta \rangle$, then the propagator $K(\tilde{\theta}_f, \tilde{\theta}_i)$ has no I_σ dependence. The quantization changes since the δ function is now $\delta(I - I_{\sigma} - j\hbar)$. I_σ is much like a gauge variable: any choice of I_σ leads to the same quantum mechanics provided the basis is rotated.

The propagator in action is

$$K(I_f, I_i) = \langle I_f | \exp \left(-i \lambda (I_\sigma) \left(\ln \frac{c}{I - I_\sigma} + 1 \right) / \hbar \right)$$

$$\times e^{i k \cos \theta_i / \hbar} | I_i \rangle$$

$$= \frac{\hbar}{2I_c} \exp \left(-i \lambda (I_f - I_\sigma) \left(\ln \frac{c}{I_f - I_\sigma} + 1 \right) \right)$$

$$\times \sum_{p = 0}^{2(I_f / \hbar) - 1} \exp \left(-i \pi (I_f - I_\sigma) p / I_c \right)$$

$$+ ik \cos \left(\frac{\pi \hbar}{I_c} \right) / \hbar),$$

where we inserted the identity in the form of a complete set of angles in the middle of the factorized propagator. This result was also obtained in Ref. [11]. Again, we see the
gauge nature of I_o: if we define $|\tilde{I}|=|I-I_o|$, then I_o drops out of $K(\tilde{I},\tilde{I})$ i.e., the propagator is the same for all gauge choices provided we translate the basis (cf. the classical case).

B. Semiclassical approximation

Semiclassical quantization of maps proceeds much like that of continuous time systems: amplitudes are expressed as the square root of a classical probability times an exponential whose phase is the appropriate classical action. If more than one classical path links the two end points in question, then a sum of such terms, one for each classical path, is needed. Pictorially, the one-step semiclassical propagator from an initial state $|i\rangle$ to a final state $|f\rangle$ may be represented as summing, with appropriate complex weights, the intersections of two manifolds in classical phase space: one is the distribution corresponding to I_o (separate for each classical path they represent shear farther and farther each to a different domain in angle). The classical paths that have been sheared over to angle $\theta_f+2\pi n$ before taking mod 2π: one with actions staying above I_o, and one staying below I_o. The upper limit of the sum extends to infinity with the differences between the terms becoming exponentially small: in the phase-space picture, these contributions are at actions which converge together exponentially toward I_o. In particular, there is an infinite number of such contributions within a phase-space area h. The classical paths they represent shear farther and farther each to a different domain in angle. At the same time the part of the evolved manifold they lie on is becoming thinner and thinner as it stretches out, which is reflected in the exponential decay of the Van Vleck prefactor in Eq. (28). Each term thus represents a topologically distinct classical path, having traversed 2π in angle a different number of times, and is an independent and exponentially decreasing contribution to the semiclassical amplitude. This is why the semiclassical sum works so well despite there being an infinite number of contributions within an area h in classical phase space. Moreover, there are no caustics in the angle representation; the manifold in Fig. 6(a) is never tangent to an angle state. The semiclassical approximation is very good, as seen in Fig. 7, where the quantum and semiclassical one-step propagators are plotted. (One mild warning to the reader: diffraction at the cutoff introduced at large actions affects the quantum sum over action matrix elements and the semiclassical sum over angle domains in different ways. The consequence is that they differ more in certain ranges of final angle than in others.)

Equation (28) can also be obtained from a stationary phase Fourier transform of the action integral in Eq. (24), each stationary phase point being the classical action at a given stationary phase point, or intersection in phase space. We can also obtain a fully quantum propagator starting from semiclassics, if we write the map as an involution of two (noncommuting) maps $T=T_2T_1$, where

$$K^{sc}(\theta_1, \theta_f) = \frac{1}{I_c} \sqrt{\frac{i\pi c}{2\lambda}} \frac{\cos \theta_f}{\cos \theta_i} e^{i\theta_f/2\lambda \cos \theta_i} e^{i\theta_f/2\lambda \cos \theta_i/2\lambda}$$

where the sum is over different domains in angle, arising from taking mod 2π after the shearing. (We note again the gauge role of I_o is manifest: using the rotated basis as described in Sec. III A the I_o dependence in the propagator drops out). The sum has a lower limit at

$$n_c = \left\lfloor \frac{1}{2\pi} \left(\frac{\ln c}{I_c} - (\theta_f - \theta_i) \right) \right\rfloor_+$$

(29)

(where, as before, []+ rounds up to the closest integer); this corresponds to the truncation of the cylinder in the action coordinate. The two terms for each n represent the two classical paths that have been sheared over to angle $\theta_f+2\pi n$ before taking mod 2π: one with actions staying above I_o, and one staying below I_o. One may compute the semiclassical angle propagator from the type 1 classical generating function F_1:

$$K^{sc}(\theta_1, \theta_f) = \sum_{n} \sqrt{\frac{-1}{2\pi i h}} \frac{\delta F_1}{\delta \theta_i} e^{i\theta_f/\lambda \cos \theta_i} e^{i\theta_f/\lambda \cos \theta_i/2\lambda}$$

(27)

where $I_i = -\delta F_1/\delta \theta_i$ and $I_f = \delta F_1/\delta \theta_f$ and the sum is over different classical paths that link θ_i with θ_f. For the map, $F_1(\theta_i, \theta_f)=I_o(\theta_f-\theta_i)$ $= c\lambda \exp((\theta_f-\theta_i)/\lambda)+k \cos \theta_i$, where the two signs represent the classical paths above and below I_o, respectively. This gives

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{Fig.6}
\caption{Classical one-time step evolution of the whisker map, $\lambda=10$, $k=2$, and $I_o=0.5$. (a) Initial distribution at $\theta=\pi$. (b) Initial distribution at $I=1$.}
\end{figure}
quantum mechanically. Performing the sum over domains the semiclassical equation

\[F \]

The generating functions fold in Fig. 6

initial conditions with action the intersection of the horizontal

one exactly finds formula just 1; this is consistent with the semiclassical construction in the mixed term, and the Van Vleck prefactor for each is

asymptotic tangency of the manifold with the representation

caused a harsh divergence in the semiclassics. However, here

dangerously resembling the supercaustic of Sec. II. There

To construct the angle propagator for

there is no problem for the semiclassics considering the

dangerously resembling the supercaustic of Sec. II. There

I_1^k \] and we expect that the action space semiclassics fails here.

We now turn to the semiclassical one-step action space

picture as a gauge parameter: it is clear from the amount of rotation or shift needed to yield the same quantum mechanics for different

\[K^{sc}(I_1, I_f) = \sqrt{\frac{1}{2\pi i k} \left(\frac{1}{1 - \frac{I_f - I_1}{k}} \right)^{1/4}} \times \exp \left(-i\lambda (I_f - I_1) \ln \left(\frac{c}{I_f - I_1} + 1 \right) \right) \right) \right) \right) \]

+ (I_f - I_1) \sin^{-1} \left(\frac{I_f - I_1}{k} \right) \right) \]

+ i \exp \left(-i\ln \left(\frac{c}{I_f - I_1} + 1 \right) \right) \right) \right) \]

Finally, we consider a quantity independent of representation which shows the normalized difference between the semiclassical and quantum propagators,

\[\chi = \frac{1}{N} \text{Tr}(U_{qm} - U^{sc})^3 (U_{qm} - U^{sc}) \]

\[= \frac{1}{N} \sum_i \sum_j \left| K^{qm}(\theta_i, \theta_j) - K^{sc}(\theta_i, \theta_j) \right|^2, \]

where \(U_{qm} \) is the quantum evolution operator and \(U^{sc} \) would be the evolution operator that gives the semiclassical propagator. In Fig. 8 we plot \(\chi \) as a function of \(I_o \), and notice that the difference is very small. (We also plot the difference between the quantum and the semiclassical sum cutoff within \(h \) of \(I_o \), and find a larger difference—the contributions within \(h \) of \(I_o \) are indeed important). Notice also the \(h \) periodicity with \(I_o \), as expected from its role as a gauge parameter; it is clear from the amount of rotation or shift needed to yield the same quantum mechanics for different \(I_o \)'s that \(I_o \)'s differing by \(h \times (\text{integer}) \) are equivalent.
IV. SUMMARY AND CONCLUSIONS

In this paper we have considered two types of quantum amplitudes which might have been thought to be semiclassically troublesome. The first, a "supercaustic," results from the asymptotic tangency of classical phase-space manifolds, a tangency which leads even the correct quantum amplitude to diverge. We showed that the semiclassical divergence is completely wrong, but were able to uniformize the semiclassical amplitude in a time tested manner, by comparison with the local behavior of known potentials. We did not treat all possible asymptotic forms; rather, we focused on those potentials which decay exponentially at large distance. However, our techniques point the way to uniformizing other asymptotic forms.

The second case treated was quite different. The whisker map, treated semiclassically in angle space representation, has an infinite number of contributions converging in a small region of phase space. Rather, as always, it is the enclosed area between successive contributions (obtained by following the manifolds in their intricate foldings from one intersection to another) that matters. In the chaotic case it was shown [13] that even though the proliferation of caustics is indeed exponential, the increase in the time for which the semiclassical result holds is a fractional power law in \hbar, not logarithmic in \hbar as had been suggested. Here we have seen the appearance of an infinite number of terms in one iteration of the whisker map, and yet the semiclassical sum is accurate. In this case the validity of each term is due to its topological distinctness.

ACKNOWLEDGMENTS

This research was supported by the National Science Foundation under Grant No. CHE-9610501, and through ITAMP at the Harvard-Smithsonian Center for Astrophysics.