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Time-resolved Fourier optical diffuse tomography
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Time-resolved Fourier optical diffuse tomography is a novel approach for imaging of objects in a highly scat-
tering turbid medium with use of an incident (near) plane wave. The theory of the propagation of spatial
Fourier components of the scattered wave field is presented, along with a fast algorithm for three-dimensional
reconstruction in a parallel planar geometry. Examples of successful reconstructions of simulated hidden ab-
sorptive or scattering objects embedded inside a human-tissue-like semi-infinite turbid medium are provided.
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1. INTRODUCTION
Research on the use of near-infrared diffusive light for
biomedical imaging and diagnosis has advanced over the
past decade because of the potential of the technique to be
a safe, noninvasive, affordable, and superior diagnostics
tool.1–3 In the search for a methodology that provides
fast data acquisition and reconstruction to perform imag-
ing with high resolution in real time, a variety of tech-
niques have been explored including the use of time-
resolved picosecond pulses, continuous waves, and diffuse
photon-density waves. Most methods reconstruct three-
dimensional (3D) optical property maps (OPMs) by matrix
inversion, by iterative techniques, or by 3D rendering of
two-dimensional (2D) projection images.4–8 The degree
of difficulty of inverting the whole 3D map at one time is
usually time prohibitive when the number of volume ele-
ments involved increases, and 3D rendering of two-
dimensional projection images requires extra depth infor-
mation of inhomogeneities inside turbid media to behave
well, and it has other limitations.7,9

In this paper, we first introduce the theory of propaga-
tion of the spatial Fourier component of the scattered
wave field inside a turbid medium. We then develop a
new optical diffuse imaging methodology based on this
theory, using the two-dimensional Fourier transform of
photon intensity on a plane to detect inhomogeneities in a
highly scattering turbid medium when the medium is il-
luminated by a picosecond (near-) plane-wave pulse. In
such a spatial Fourier space, the picture of photon migra-
tion is much simplified in the sense that different spatial
frequency components of the OPM (2D Fourier transform
on the xy plane) are decoupled from one another and de-
pend only on the corresponding spatial frequency compo-
nent of the photon intensity on the detector plane. On
the basis of this observation, we obtain a super-fast recon-
struction of a 3D OPM by matrix inversion of each spatial
component independently. The effect of noise is explic-
itly handled by controlling the set of spatial frequency
components and the regularization parameters used in
the matrix inversion. After a rigorous account of the
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theory and a brief description of the algorithm, examples
of reconstruction, by using backscattered photons, of ab-
sorptive and scattering inhomogeneities located up to 2
cm below the surface of a human-tissue-like semi-infinite
turbid medium are presented.

2. THEORY
The propagation of photon density f(r, t) at position r
and time t in a highly scattering turbid medium can be
described by the diffusion equation

]

]t
f~r, t ! 2 c¹ • D~r!¹f~r, t ! 1 cma~r!f~r, t !

5 S~r, t !. (1)

The absorption coefficient ma (per unit length), and the
diffusion coefficient D 5 1/(3ms8), where ms8 is the reduced
scattering coefficient, may depend on the position in the
medium; c is the speed of light inside the medium, and S
is the source term describing the density of photons gen-
erated per second.

For the case of a uniform medium and an incident
source S(r, t) (S 5 0 when t , 0), the incident wave
field is f i(r, t) 5 *d3r8*0

t dt8S(r8, t8)G(r, r8, t 2 t8)
where G(r, r8, t) is the Green’s function for the diffusion
equation in a uniform turbid medium. When some weak
inhomogeneities (objects such as tumors) are embedded in
the medium, we write

ma,obj~r! 5 ma 1 dma~r!,

ms,obj8 ~r! 5 ms8 1 dms8~r!, (2)

where ma and ms8 are the constant absorption and reduced
scattering coefficients of the otherwise homogeneous me-
dium and ma,obj(r) and ms,obj8 (r) are the absorption and re-
duced scattering coefficients of the embedded inhomoge-
neity that are spatially dependent. Plugging Eq. (2) into
2001 Optical Society of America
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Eq. (1) and noting the diffusion parameter of the inhomo-
geneity Dobj(r) 5 D 1 dD(r) 5 1/(3ms8) 2 dms8(r)/
(3ms8

2), we have

]

]t
f~r, t ! 2 Dc¹2f~r, t ! 1 macf~r, t !

5 S~r, t ! 1 c¹ • dD~r!¹f~r, t ! 2 cdma~r!f~r, t !. (3)

The complete right-hand side of Eq. (3) now acts as the
source term, of which S(r, t) contributes to the unper-
turbed wave field f0 5 f i(r, t) and the rest of the terms
contribute to the scattered wave field,

fs~r, t !

5 f~r, t ! 2 f0~r, t !

5 E d3r8E
0

t

dt8G~r, r8, t 2 t8!

3 @c¹r8 • dD~r8!¹r8f~r8, t8!

2 cdma~r8!f~r8, t8!#

5 2E d3r8E
0

t

dt8G~r, r8, t 2 t8!dma~r8!cf~r8, t8!

1 E d3r8E
0

t

dt8
dms8~r8!c

3ms8
2 ¹r8G~r, r8, t 2 t8!

• ¹r8f~r8, t8!, (4)

after integration by parts.
To first order in the variation of optical absorption and

reduced scattering coefficients, we can just replace
f(r8, t8) in Eq. (4) with f i , i.e., the total wave field is a
superposition of the incident wave field f i and the singly
scattered wave field fs . This is the well-known Born ap-
proximation.

Now consider the configuration of the frequently stud-
ied parallel planar geometry (slab or semi-infinite) with
its boundaries at z 5 0 and z 5 d (d 5 1` for semi-
infinite geometry). The exact Green’s function is10

G~r, r8, t ! 5
1

4pDct
expS 2

ur 2 r8u2

4Dct
2 mact D

3 Gz~z, z8, t !, ~t . 0 !, (5)

where r 5 (x, y), r8 5 (x8, y8). Gz(z, z8, t) is chosen
according to the boundary condition of the parallel planar
geometry and depends only on time t and the z coordi-
nates of the source position r and the target position r8.
Its two-dimensional Fourier transform on r is

Ĝ~q, z, r8, z8, t ! 5 E d2rG~r, z, r8, z8, t !exp ~2iq • r!

5 exp~2iq • r8 2 Dctq2

2 mact !Gz~z, z8, t !

5 Ĝ~q, z, z8, t8!exp~2iq • r8!. (6)

For simplicity, we restrict ourselves first to the case of
a pure absorptive perturbation (dma Þ 0 and dms8 5 0)
and of an incident pulse S(r, t) 5 S(r)d (z 2 zs)d (t).
The scattered wave field on a plane 0 , z , d is thus

fs~r, z, t !

5 2E d3r8E d2r9E
0

t

dt8G~r, r8, t 2 t8!dma~r8!

3 cS~r9!G~r8, r9, zs , t8! (7)

from Eq. (4) after f is replaced by f i. Inside Eq. (7), ex-
pand the source term S(r9) and the Green’s functions
G(r, r8, t 2 t8) and G(r8, r9, zs , t8) into integrals of their
Fourier components; thus we find

fs~r, z, t ! 5 2
1

~4p2!3 E d2r8E dz8E d2r9E
0

t

dt8

3 E d2qĜ~q, z, z8, t 2 t8!

3 exp@iq • ~r 2 r8!#

3 dma~r8, z8!cE d2q9Ŝ~q9!exp~iq9 • r9!

3 E d2q8Ĝ~q8, z8, zs , t8!

3 exp@iq8 • ~r8 2 r9!#

5 2
c

~4p2!3 E d2qE d2q8E d2q9E
0

t

dt8E dz8

3 exp~iq • r!Ĝ~q, z, z8, t 2 t8!

3 Ŝ~q9!Ĝ~q8, z8, zs , t8!

3 E d2r8dma~r8, z8!exp@ 2 ir8

• ~q 2 q8!#E d2r9exp@ir9 • ~q9 2 q8!#

5 2
c

~4p2!2 E d2qE d2q8E
0

t

dt8E dz8

3 exp~iq • r!Ĝ~q, z, z8, t 2 t8!

3 dm̂a~q 2 q8, z8!Ŝ~q8!Ĝ~q8, z8, zs , t8!,

(8)

where

Ŝ~q! 5 Ŝ~q, zs! 5 E d2rS~r, zs!exp~2iq • r!,

dm̂a~q, z ! 5 E d2rdma~r, z !exp~2iq • r!

are 2D Fourier transforms of the source on the z 5 zs
plane and of the perturbation of the absorption coefficient
over the z 5 z plane, respectively. Finally, we recognize
the 2D Fourier transform of the scattered wave field
fs(r, z, t) on a plane z for the case of a pure absorptive
perturbation:
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f̂~q, z, t ! 5 2
c

4p2 E d2q8dz8dm̂a~q 2 q8, z8!Ŝ~q8, zs!

3 E
0

t

dt8Ĝ~q, z, z8, t 2 t8!Ĝ~q8, z8, zs , t8!.

(9)

In a similar fashion, for the case of a pure scattering
perturbation (dma 5 0 and dms8 Þ 0), the 2D Fourier
transform of the scattered wave field is

f̂s~q, z, t !

5
c

12p2ms8
2 E d2q8dz8dm̂s8~q 2 q8, z8!Ŝ~q8, zs!

3 E
0

t

dt8Fq • q8Ĝ~q, z, z8, t 2 t8!Ĝ~q8, z8, zs , t8!

1
]Ĝ~q, z, z8, t 2 t8!

]z8

]Ĝ~q8, z8, zs , t8!

]z8
G . (10)

The general Fourier scattered wave field is the sum of
Eq. (9) and Eq. (10). Denoting the convolutions

wa~q, q8, z, t; z8! 5 E
0

t

dt8Ĝ~q, z, z8, t

2 t8!Ĝ~q8, z8, zs , t8!,

ws~q, q8, z, t; z8! 5 E
0

t

dt8
]Ĝ~q, z, z8, t 2 t8!

]z8

3
]Ĝ~q8, z8, zs , t8!

]z8
, (11)

which are the weight functions involved in the propaga-
tion of spatial Fourier components of the scattered wave
field, we have

f̂s~q, z, t !

5 2
c

4p2 E d2q8dz8dm̂a~q 2 q8, z8!

3 Ŝ~q8, zs!wa~q, q8, z, t; z8! 1
c

12p2ms8
2

3 E d2q8dz8dm̂s8~q 2 q8, z8!Ŝ~q8, zs!

3 @q • q8wa~q, q8, z, t; z8! 1 ws~q, q8, z, t; z8!#.

(12)

For the simple case in which the incident wave is a
plane-wave pulse (see Appendix A for justification), i.e.,
S(r, t) 5 Sd (z 2 zs)d (t) where S is a constant, such
that Ŝ(q, zs) 5 4p2Sd (q), Eq. (12) simplifies to
f̂s~q, z, t ! 5 2ScE dz8Fdm̂a~q, z8!wa~q, 0, z, t; z8!

2
dm̂s8~q, z8!

3ms8
2 ws~q, 0, z, t; z8!G . (13)

The most salient feature of the above result [Eq. (13)] is
that different spatial frequency components of dm̂a and
dm̂s8 are decoupled from one another, and the q component
of the optical parameters depends only on the correspond-
ing spatial frequency component of the scattered wave
field f̂s(q, z, t). Thus the dimension of the inverse prob-
lem to be solved below is greatly reduced, as is the com-
putation time.

If we approximate the integration over z8 by a summa-
tion and fix z 5 zd at the detection plane (omitting z here-
after), the Fourier scattered wave field on the detection
plane is

f̂s~q, t ! 5 ScDz(
j51

Nz F2dm̂a~q, zj!wa~q, 0, t; zj!

1
dm̂s8~q, zj!

3ms8
2 ws~q, 0, t; zj!G , (14)

where Dz is the discretized step size, Nz is the total num-
ber of slices (layers) in the z direction between the source
plane and the detection plane, and zj is the z coordinate of
the central position of layer j.

If we set q 5 0 in Eq. (14),

f̂s~0, t ! 5 ScDz(
j51

Nz F2dm̂a~0, zj!wa~0, 0, t; zj!

1
dm̂s8~0, zj!

3ms8
2 ws~0, 0, t; zj!G , (15)

the zero spatial frequency components dm̂a(0, zj) and
dm̂s8(0, zj) can be readily solved without the need for a
complete reconstruction. Owing to the nature of Fourier
transform, they just provide the profile of the amount of
total perturbation of absorption and reduced scattering
coefficients per slice, i.e., the depth profile of the inhomo-
geneities.

The whole 3D map of absorption and reduced scatter-
ing coefficients is thus constructed through an inverse
Fourier transform from all the q components of dm̂a and
dm̂s8 at different depths, each of which is solved indepen-
dently from a series of time-resolved scattered wave field
f̂s by Eq. (14).

A schematic diagram of the procedure of image recon-
struction is shown in Fig. 1. The maximum spatial fre-
quency (cutoff frequency) of the components used in the
inversion is determined through a signal-to-noise-ratio
analysis in which the Fourier components whose magni-
tudes fall below a threshold (comparable to the noise
level) are discarded. The regularization parameter in
the matrix inversion is obtained by the robust L-curve
method.11 The L-corner finder, which locates the corner
by maximum curvature,12 is implemented and is used to
obtain the regularization parameter. Neither visual es-
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Fig. 1. Schematic diagram of image reconstruction.

Fig. 2. Geometry for time-resolved Fourier optical diffuse to-
mography with use of backscattered photons. The source is a pi-
cosecond (near-) plane-wave pulse and a series of snapshots of a
10 3 10 cm2 area on the surface are computed as the input to im-
age reconstruction. Absorptive objects A (22.5, 21.875, 20.75)
cm, B (21.25, 20.31, 20.75) cm, C (0.94, 1.56, 21.95) cm, and D
(0.94, 20.625, 21.95) cm or scattering objects E (22.5, 21.875,
20.75) cm, F (21.25, 20.31, 20.75) cm, G (0.94, 1.56, 21.35) cm,
and H (0.94, 20.625, 21.35) cm are used in the simulation.
timate nor prior information is required for this proce-
dure. L curves are different for each spatial frequency q.
The regularization parameter is determined from the re-
construction of depth profile (where an inversion for q
5 0 is performed). The same value is then used in the
full 3D reconstruction (layer reconstructions, where in-
version includes q Þ 0).

Both transmission and backscattering image recon-
struction configurations can easily be made by using Eqs.
(13) and (14).

3. SIMULATION
For demonstration purposes, consider a semi-infinite tur-
bid medium (z , 0) with its surface at z 5 0 (Fig. 2),
whose absorption coefficient ma 5 0.0033 mm21 and re-
duced scattering coefficient ms8 5 1.0 mm21.

A. Absorptive Inhomogeneity
Four absorbing objects A, B, C, and D, each 6.25 mm
3 6.25 mm 3 3 mm and with absorption coefficient
ma,obj 5 0.02 mm21 and reduced scattering coefficient
equal to that of the background, are placed at depth 7.5,
7.5, 19.5, and 19.5 mm below the surface, and their xy co-
ordinates are (225, 218.75), (212.5, 23.1), (9.4, 15.6),
and (9.4, 6.25) mm, respectively. The medium is illumi-
nated by an incident pulse of a Gaussian shape of
exp(2r2/2s 2) with s 5 50 mm inside an aperture of ra-
dius 50 mm, propagating along the negative z axis at time
t 5 0.

These parameters are potentially applicable to optical
mammography of the compressed-breast-toward-chest
setup with use of backscattered photons. A series of
simulated measurements (total Nt 5 15 snapshots from
300 to 2400 ps) of an area 100 mm 3 100 mm on the sur-
face plane z 5 0 are generated by using a direct calcula-
tion for the Gaussian pulse in r space. The simulated
data are used as input for inversion after adding a 1%,
5%, or 10% Gaussian noise.

In the reconstruction part, the near-surface region
of the turbid medium of depth up to 3 cm is sliced into
Nz 5 10 layers, i.e., Dz 5 0.3 cm, and objects A and B are
then located on layer 3, and C and D are located on layer
7. The detection plane of an area of 10 3 10 cm2 is di-
vided uniformly into a NxNy 5 32 3 32 grid. Objects A,
B, C, and D all take 2 3 2 elements by this grid. The
results of reconstruction are shown below.
Fig. 3. Absorption depth profile for (a) with 1% noise, (b) 5% noise, and (c) 10% noise.
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1. Depth Profile
The absorption depth profile, i.e., the total absorption per-
turbation per layer *d2rdma(r, z) versus depth z is shown
in Fig. 3 with different noise levels for cases (a) 1% noise,
(b) 5% noise, and (c) 10% noise. In Fig. 3(a) there is one
peak at depth z 5 0.75 cm (layer 3) where objects A and B
are embedded, and another peak at z 5 1.95 cm (layer 7)
where objects C and D are embedded. The width of the
first peak at half-height is 0.34 cm, approximately the
thickness of one layer (0.3 cm), which means that the
depth of objects A and B is resolved very well. The sec-
ond peak of objects C and D spans two and a half layers
with its width of peak at half-height 0.74 cm, but its peak
position is still correct.

When the level of noise increases, the peak values of
both peaks decrease, and the half-widths increase. The
effect on the second peak at z 5 1.95 cm is much more
significant than that on the first one at z 5 0.75 cm.

2. Layer Reconstruction
The full 3D OPM is reconstructed. The reconstructed ab-
sorption coefficients of the layers at the two peak posi-
tions are shown in Figs. 4–6 for the three noise levels.
Figure 4 shows that objects A and B are clearly resolved
as two objects centered at their original positions with
negligible expansion; and objects C and D at depth z
5 1.95 cm are also detected at the correct central posi-
tions, but the resolved images are expanded on the xy
plane. With an increase in noise level, the shape of ob-
jects A and B blurs from Figs. 4(a) to 5(a) and 6(a), and
the blur is even worse for objects C and D under the same
condition [from Figs. 4(b) to 5(b) and 6(b)].

At noise level of 1%, the reconstructed absorption pa-
rameter for objects A and B is 0.0071 mm21 approxi-
mately 36% of the original value 0.02 mm21 of the absorp-
tive inhomogeneity. In other words, the object appears
larger in space with a weakened absorption parameter.
As the noise level increases, the effect is accentuated with
a further reduction in the resolved absorption parameter.

B. Scattering Inhomogeneity
For another example, four scattering objects E, F, G, and
H, each 6.25 mm 3 6.25 mm 3 3 mm and with reduced
scattering coefficient ms,obj8 5 0.5 mm21 and absorption co-
efficient equal to that of the background, are placed at
depth 7.5, 7.5, 13.5, and 13.5 mm below the surface, and
Fig. 4. Layer reconstruction at a noise level of 1%: (a) resolved objects A (left) and B (right) at z 5 0.75 cm (layer 3); (b) resolved
objects C (upper) and D (lower) at z 5 1.95 cm (layer 7). The darkness of the pixel represents the resolved absorption coefficient in units
of inverse millimeters.

Fig. 5. Layer reconstruction at a noise level of 5%: (a) resolved objects A (left) and B (right) at z 5 0.75 cm (layer 3); (b) resolved
objects C (upper) and D (lower) at z 5 1.95 cm (layer 7). The darkness of the pixel represents the resolved absorption coefficient in units
of inverse millimeters.
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Fig. 6. Layer reconstruction at a noise level of 10%: (a) resolved objects A (left) and B (right) at z 5 0.75 cm (layer 3); (b) resolved
objects C (upper) and D (lower) at z 5 1.95 cm (layer 7). The darkness of the pixel represents the resolved absorption coefficient in units
of inverse millimeters.

Fig. 7. Scattering depth profiles for (a) with 1% noise, (b) 5% noise, and (c) 10% noise.

Fig. 8. Layer reconstruction at a noise level of 1%: (a) resolved objects E (left) and F (right) at z 5 0.75 cm (layer 3); (b) resolved objects
G (upper) and H (lower) at z 5 1.35 cm (layer 5). The darkness of the pixel represents the resolved reduced scattering coefficient in
units of inverse millimeters.
their xy coordinates are (225, 218.75), (212.5, 23.1),
(9.4, 15.6), and (9.4, 6.25) mm, respectively. Objects E
and F are now located on layer 3, and G and H are located
on layer 5. The same source and inversion procedure
used in the previous example are used here. The results
of reconstruction are shown below.
1. Depth Profile
The scattering depth profile is shown in Fig. 7 with differ-
ent noise levels for cases (a) 1% noise, (b) 5% noise, and (c)
10% noise. Two peaks are correctly revealed with the
first at depth z 5 0.75 cm (layer 3) and another at z
5 1.35 cm (layer 5), where objects E and F, G and H are
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embedded, respectively. In Fig. 7(a), the width of the
first peak at half-height is 0.3 cm and that of the second
peak is 0.42 cm. This means that the depth of these ob-
jects is resolved quite well.

With an increase in noise level, we observe the same
behavior of decreasing quality of depth resolution as in
the absorptive case.

2. Layer Reconstruction
The reconstructed scattering coefficients of the layers at
the two peak positions (layer 3 and layer 5) are shown in
Figs. 8–10 for the three noise levels.

We observe a result similar to that for the absorptive
case. Objects E and F are better resolved than objects G
and H, which are deeper into the turbid medium, and the
noise has a more adverse effect on objects G and H than
on objects E and F. The reconstructed reduced scattering
coefficient of objects E and F is 0.27 mm21, approximately
54% of the original value of the embedded scattering in-
homogeneity, at a noise level of 1%.
4. DISCUSSION
A fast time-resolved Fourier optical diffuse tomography
based on decoupled propagation of spatial Fourier compo-
nents of the scattered wave field when the medium is il-
luminated by a plane wave is presented. For a wave not
strictly plane but whose zero-frequency component domi-
nates, this approximation is still valid as long as the ra-
dial dimensions of the volume where inhomogeneities ex-
ist are much smaller than the effective width of the
Gaussian beam (see Appendix A).

The image-reconstruction method provided is efficient.
The optical parameters at NxNyNz different voxels are re-
constructed from a set of Nt measurements by Nk

2 times of
inversions of Nz 3 Nz matrices, where Nk

2 , NxNy is the
total number of Fourier components with the noisy ones
discarded. Our procedure is much more efficient than a
direct reconstruction, where an inversion of NxNyNz
3 NxNyNz matrix is involved. The speedup is approxi-
mately O(NxNy) times faster. The time this algorithm
takes to perform a complete 3D reconstruction in the
Fig. 9. Layer reconstruction at a noise level of 5%: (a) resolved objects E (left) and F (right) at z 5 0.75 cm (layer 3); (b) resolved objects
G (upper) and H (lower) at z 5 1.35 cm (layer 5). The darkness of the pixel represents the resolved reduced scattering coefficient in
units of inverse millimeters.

Fig. 10. Layer reconstruction at a noise level of 10%: (a) resolved objects E (left) and F (right) at z 5 0.75 cm (layer 3); (b) resolved
objects G (upper) and H (lower) at z 5 1.35 cm (layer 5). The darkness of the pixel represents the resolved reduced scattering coefficient
in units of inverse millimeters.
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above examples (of 32 3 32 3 10 volume elements) is less
than half a minute with use of the scripting language Py-
thon on one 180-Mhz CPU of an Origin 200 computer
from Silicon Graphic Inc. This algorithm scales only lin-
early with the number of elements in the xy grid, so it can
be used to handle much larger data sets in real time with
little difficulty.

This approach does not limit the number or the thick-
ness of the inhomogeneities. It allows multiple inhomo-
geneities, and one inhomogeneity may span several lay-
ers.

With little effort, a depth profile (the sum of the pertur-
bation of the optical parameter versus depth) of the inho-
mogeneities inside a highly scattering turbid medium can
be obtained. This information itself may be very useful
in some cases. When the inhomogeneity is found to exist
only in one layer from the depth profile, the summation in
Eq. (14) no longer exists. A direct inverse Fourier trans-
form can thus be used to resolve the inhomogeneity when
it is a solely absorptive or scattering perturbation.

APPENDIX A
Equation (12) is the exact formula for calculating the
scattered wave field. For a pulse S(r, t) 5 S(r)
d (z 2 zs)d (t) with Gaussian shape S(r)
5 S0 exp(2r2/2s 2), we have Ŝ(q) 5 2ps 2S0
3 exp(2s 2q2/2) and the first term of Eq. (12),

A 5 2
s 2S0c

2p
E d2q8dz8dm̂a~q 2 q8, z8!

3 exp~2s 2q82/2!wa~q, q8, z, t; z8!

5 2
s 2S0c

2p
E d2q8dz8d2r8dma~r8, z8!

3 exp@2i~q 2 q8! • r8 2 s 2q82/2#

3 wa~q, q8, z, t; z8!

5 2
s 2S0c

2p
E d2r8dz8dma~r8, z8!exp~2iq • r8!

3 E
0

t

dt8Ĝ~q, z, z8, t 2 t8!

3 Gz~z8, zs , t8!exp~2mact8!

3 E d2q8 exp~2s 2q82/2 2 Dct8 1 iq8 • r8!

(16)

after plugging in Eq. (11) and Eq. (6).
The last integral of Eq. (16) can be performed exactly

and turns out to be pR22 exp(24r82/R2), where the effec-
tive width R2 5 s 2/2 1 Dct8 . s 2/2. When the inho-
mogeneities exist inside a region of radial dimension L
around the origin of the xy coordinate system that satis-
fies L ! R, we can approximate exp(24r82/R2) by 1,
which is equivalent to letting q8 → 0, the case of an inci-
dent plane wave. The error made by such an approxima-
tion is of second order in L/R.

The same analysis can be applied to the second term of
Eq. (12).
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