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Analytical form of the particle distribution based on the cumulant solution of the elastic
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An analytical expression of the particle distribution based on an analytical cumulant solution of the time-
dependent elastic Boltzmann transport equat®fE) is presented. This expression improves upon the previ-
ous second order cumulant solution of the BTE described by a Gaussian distribution in two apects:
separating the ballistic component from the scattered component to ensure that the summation in expressions
is convergent; and2) enforcing the causality condition to ensure that no particle travels faster than the free
speed of the particles. Time-resolved profiles obtained using the analytical form are compared with those
obtained by the Monte Carlo simulation, for both transmission and backscattering. The calculating time using
our analytical form is much faster than that using the Monte Carlo approach.
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I. INTRODUCTION reconstruction process calls the forward model many times.
Recently, we have developed an analytical solution of the
The time-dependent elastic Boltzmann transport equatiofime-dependent elastic BTE in an infinite uniform medium
(BTE) describes the particleand light, acoustic wave, ejc. with an arbitrary phase functiof?,8]. The exact spatial cu-
propagation with time in a scattering medium, where themulants ofl(r,s,t) up to an arbitrary high order at any angle
particles suffer multiple scattering by randomly distributedand any time have been derived. A cutoff at second order of
scatterers. The BTE is also called the radiative transfer equakhe cumulants(r,s,t) can be approximately expressed by a
tion in light propagatior{1-3]. The solutions of the elastic Gaussian distribution, which has the exact first cumulema
BTE are applied in broad areas, such as atmospheric sciengesition of the center of the distributipand the exact sec-
medical imaging, and solid state physics. ond cumulant(the half-width of the spread of the distribu-
An example is the approach to optical imaging of humantion). The cumulant solution of BTE has been extended to
tissue that is often called “diffusion tomography,” becausethe case of a polarized photon distribution, and to semi-
the theoretical model is built based on the solution of theinfinite and slab geometries. Using a perturbation method,
diffusion equation. The diffusion equation is the lowest orderthe distributionl(r,s,t) in a weak heterogeneous medium
approximation of the radiative transfer equation, which hasan be calculated based on the cumulant solution of the BTE.
significant error when the distance between a voxel and a The analytical cumulant solution of the BTE obtained,
source is short. However, the contribution from these voxelalthough it has exact center and half-width, is not satisfac-
near the source to the measured signals is much larger thaory in two respects. First, one cannot ensure that the sum-
that from voxels deep inside body. Hence, for accurate immation overl in the expressions shown in Sec. Il is conver-
aging the theoretical model should be based on solution aofent at very early times. Second, a remarkable fault of the
the radiative transfer equation. A similar procedure can b&Saussian distribution at early times is that particles at the
applied to images of cloud distribution obtained using a lidarfront edge of the distribution travel faster than the free speed
arranged on a satellite, which requires knowledge of the mulef the particles in the medium, thus violating causality, espe-
tiple scattering effect of water drops distributed in the cloudcially for those particles moving along near forward direc-
on the time-resolved backscattering signals. In both extions. The Gaussian distribution is accurate at long times and
amples, the size of the scatterers can be nearly equal to @f the backscattering case, since many collisions lead to a
larger than the wavelength of light, leading to a large anisoGaussian distribution according to the central limit theorem.
tropic factor. The use of low-frequency sound to detect oil- In this paper, the analytical cumulant solution of the BTE
bearing layers deep under the ocean floor is another exampleas been improved compared to our previous watkin
Currently, numerical approaches, including Monte Carlothese two respects. For solving the first problem, we make a
simulations, are the main methods in solving the BFE6].  separation of the ballistic component from the tdtal,s,t)
Numerical solution of the BTE is a cumbersome task, sinceand compute the cumulants for the scattered compaii@nt
the particle distributiori(r,s,t) is a function of positiorr,  x(r,s,t). This treatment ensures convergent summation over
angles, and timet, in a six-dimensional space of parameters.|. Also this separation provides a clearer picture of particle
An analytical expression fdi(r,s,t) with quantitative accu-  propagation. In the time-resolved transmission profile the
racy can greatly reduce the computation burden in modelingallistic component is described by a sharp jump exactly at
particle and light propagation in scattering media, which isthe ballistic time, separated from the later scattered compo-
essential for imaging in turbid media, because the invers@ent. For solving the second problem two approaches are
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used. The first method is to calculate the distribution includ- * >
ing the higher-order cumulants, based on our work in Ref. expl >, M (it)Vn! | = (exp(itx)) = >, (X)(it)"/n!  (4)
[8]. However, computation of high-order cumulants is a n=1 n=0
cumbersome task. In the second method the Gaussian distri- . ; P

The first cumulantx). is the mean position ok. The
bution is replaced by a different-shaped form, which satisfie% e P

causality, and maintains the correct center position and thg" . .
correct half-width of the distribution computed by our ana-BUt'on' The h|ghe_r cgmulants are rela;ted to the detailed
§hape of the distribution. For examples®). describes the

lytical approach. There are infinite choices of the shapes o N
the distribution satisfying these conditions; we choose &KEWNess or asymmetry of the distribution, apd). de-
simple analytical form. At long times, the reshaped distribu-scr_'bes_ th_e “kurtosis” of the distribution, that is, the _extent Fo
tion tends to the Gaussian distribution. Our results show that/hich it differs from the standard bell shape associated with
the reshaped distribution matches that obtained using Monté€¢ Gaussian distribution function. The cumulants hence de-
Carlo simulation much better than the Gaussian distributionScribe the distribution in an intrinsic way by subtracting off
The paper is organized as follows. In Sec. Il we brieﬂythe effects of all lower-order moments. In the 3D case, the
review the main results of the analytical cumulant solution offi'St cumulant has three components, the second cumulant
the BTE. Section Il presents a separation of the ballistic1@S Six components, and so on. _ _
component from the scattered component, which makes the Ve have derived an explicit algebraic expression for the
summation ovet convergent. Section IV improves the dis- SPatial cumulants at any angle and any time, exact up to an
tribution at early times using two approaches, and presenlgrbltrar|ly high ordem [8]. This means thg distribution func-
the numerical result compared with the Monte Carlo simulafion1(r,s,t) can be computed to any desired accuracy. At the
tion. Section V is devoted to discussion and conclusions. Second ordem=2, an analytic explicit expression for distri-
bution functionl(r,s,t) is obtained 7,8]. This distribution is
Gaussian in position, which is accurate at later times, but
[l. THE ANALYTICAL CUMULANT SOLUTION only provides the exact mean position and the exact half-
OF THE BTE width at early times.
The Gaussian distribution of the second-order cumulant
solution is written as

econd cumulanix?), represents the half-width of the distri-

The elastic Boltzmann kinetic equation of particles, with
magnitude of velocity, for the distribution function(r,s,t)

as a function of timet, positionr, and directions, in an F(s,so,t) 1
infinite uniform medium, from a point pulse light source, I(r,st) = (4m®? (deB)?
S(r—rg)8(s—sy) 8(t—tp), is given by
1
al(r,s,)/at+vs-V,I(r,st) + ul(r,st) Xexp[— Z(B'l)a,e(f —19.(r=r% |, (5
:,usf P(s,s)I(r,s',t)ds’ — udl(r,s,t) where F(s,sy,t) is the total angular distributiof(s,s,t)
=[I(r,s,t)dr, which has the following exact expression:
+8(r =1p)o(s = sp) St —to) (1) ol+1
where u, is the scattering ratey, is the absorption rate, and F(s,50.t) = eXp(= pa) 2 . exp(—=gt)Pi(s - so)
P(s,s’) is the phase function, normalized f@(s,s’)ds' =1. !
The phase function is assumed to depend only on the scat- B 20+1 «
tering angle in an isotropic medium. Under this assumption, = expl- “at)zl . exp= Gt 2 Yim(S) Yim(So).
an arbitrary phase function can be handled. We expand the "
phase function in Legendre polynomials with constant coef- (6)
ficients,
where
1
P(s,s') = EE aP(s-s). 2) 0 =udl-al2+1)]. 7
|

_ Two special values aj, aregy=0, which follows from the

Recently, we have developed a different approach to obnormalization ofP(s,s’), andg,=v/l,,, wherel,, is the trans-
tain an analytical solution of the BTE in an infinite uniform port mean free path, defined bl,=v/[ud1-{cos6))],
medium, based on a cumulant expansidy8]. where(cos#) is the average o§-s' with P(s,s') as weight.

_ We briefly review the concept of the “cumulant” in aone- |y gq.(g), v, (s) are spherical harmonics normalized to
dimensional1D) case. Consider a random variaklevith a 4ol (21+1).

probability distribution functiorf(x). Instead of using(x) to

Th ter of th kéthe first | denoted b
describe the distribution, we define thth moment ofx, e center of the packéthe first cumulant denoted by

r¢ is located at
0= [ et ® 122G AP(coso(l + DF(g - g + (g~ g )],
|
and correspondingly theth cumulant(x"). defined by (8)
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=G, AP (cos)cos¢lf(g —gi-1) — (g — g1,
|

9)
where G=v exp(—u,t)/F(s,s,t), A=(1/4m)exp—-gt), and
for any variablex,

f(x) = [exp(xt) — 1]/x. (10

r is obtamed by replacing casin Eq. (9) by sin¢. In Egs.
(8) and (9), P (cosﬁ) is the associated Legendre function.

The square of the average spread half-widle second
cumulani is given by
Bus=vGA 5T r3/2 (11)

where all the coefficients are functions of angle and time:

I(1-1) (I+D(+2
A= P,(cosd EWY + E@
2= 2, APi(cos ){Zl—l | J+3 O
2 2
- E|(3)+(|+1) B, (12)
21-1 21+3
1 I(1-1) (I+210(+2
Ayyy= > =AP(cos)| - ——EY - ————E
oy 22 Pl )[ 21-1 2+3
I(I 1) E(3 N (I+1)(1+2) £
T 21+3
1
+ > EA' P\?(cos)cod2¢)
|
X 1 El(l) + 1 EI(Z) _ 1 I(3) _ 1 I(4) ,
21-1 21+3 21-1 21+3

(13)
where(+) corresponds td,, and(-) corresponds ta,,,

1 . 1
Ay=Ap=2 oA P?(cos6)sin(2¢) [ 2|—_1E|(1)
|

- E? - ! EY - : Ef‘”} . (19

21 +3 20-1 21+3

1 2(0-1
Ay,=A,=> oA P(Y(cos 0)cos¢{ %Ef”
| _
+

_A+2 E? + ! E + L Ef“)] (15)

21+3 21-1 21+3

Ay, is obtained by replacing cag in Eq. (15) by sing. In
Egs. (1215 E*™ are given by

EY =[f(g - 92 ~ (6 - 0-0)(9-1- 9D,  (16)
E? = [f(0 = 012 ~ F(0 = 0D (Ge1 = G2, (17)
E =[f(gi - 9i-0) ~ t)(g = G-, (18)
E® = [f(g) — gea) — (g — 1) (19)
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FIG. 1. The moving centeR and the diffusion coefficient®,,
andD,, of the particle density function as functions of tirme

The second order cumulant approximation for the particle
density distributionN(r ,t) has a Gaussian shape:

1 1 (z-R)?

N(r,t) = 7 exp —————

(47D, pt)*"“4wD, ot 4D, pt

0 +y?)
X - AR 20
ex 4Dt exp= uat) (20)
with a moving center located at

=v[1-exd-gt)]/g;, (21)

and the corresponding time-dependent diffusion coefficients
are given by

vt
D,,= g{

O1
+ S —
O2(01 -

-kl

[1-exgd-0g;t)]
03(01 - 9

2
9)

v
D, = —
yy 3t{

B 92(01 -

[1 - expt- gt)] - zigz[l ~ exd- glt>]2},
1
22

t
01

Dxx [1 eXF( glt)]

9)
[1-exg- 92'[)]} :

91(91

(23
92
Each distribution in Eqs5) and(20) describes a particle
“cloud” anisotropically spreading from a moving center, with
time-dependent diffusion coefficients. As shown in Fig. 1, at
early timet—0, the mean position of the photons moves
along thes, direction with speed, and the diffusion coeffi-
cient tends to zero. These results present a clear picture of
nearly ballistic motion at— 0. With increase of time, the
motion of the center slows down, and the diffusion coeffi-
cients increase from zero. This stage of particle migration is
often called a “snakelike mode.” At late times, the total an-
gular distribution function tends to become isotropic. The
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19(r,s,t) = expf = (us + u)t]o(r —vts) (s —Sp). (24)

The moments of the ballistic component can be easily calcu-
lated. Whens, is alongz, we have

x105

20 |

3
o sl f Z10(r,5,0)d = exd (- us+ ua)t](wt)"d(s—5p),
£ .
é (25
o
8 1.0 and other moments related #8x"y"™ (n,,n;# 0) are zero.
- The total distribution is the summation of the ballistic
05 | component and the scattered component:
1(r,s,) =10(r,5,t) +19(r,s,1); (26)
0 0 50 100 150 200 250 300 350 400 450 500 hence, the moments of the scattered component can be ob-
i(ps) tained by subtracting the corresponding ballistic moments

from the moments of(r,s,t). For example, we have

FIG. 2. Light distribution in an infinite uniform medium as a
function of time at different received angles, using the second cu- _
mulant solution of the BTEGaussian distribution where the de- fz”l(s)(r,s,t)d?’r = f 21(r,s,t)dr — f 210(r s, t)d’.
tector is located at=10 mm from the source in the incident direc-
tion. The parameters for this calculation atg=2 mm, the
absorption length,=300 mm, the phase function is computed us- Notice that
ing Mie theory for polystyrene spheres with diametierl.11 um
in water, and the wavelength of the laser souree25 nm, which Ss—s) = 2 [(21 + 1)/4m]P(s- ). (29
gives theg factor g=0.926. I

(27)

i ) Substituting Egs(25) and(28) into Eq.(27), the correspond-
particle density, att>I,/v and r>ly, tends toward the jng cumulants for the scattered compongfitr ,s,t) can be
center-moved1l,) diffusion solution with the diffusive co- easily obtained:; they replace EdS), (8), and(12) by
efficient 1,/3. Therefore, our solution quantitatively de-
scribes how particles migrate from nearly ballistic motion, to
snakelike motion, and then to diffusive motion.

Figure 2 shows the calculated distribution as a function of
time at different receiving angles in an infinite uniform me- —exp(— ud) IPi(s- o), (29
dium, computed by the second order cumulant solution,
where the detector is located al,5rom the source in the 1
incident direction of the source. Figure 2 shows anisotropy re¥= G? H(cos&);r{exp(— gL+ Df(g = givr)
of the distribution at a distance of;5from the source. This
type of distribution has been demonstrated by time-resolved +1f(g — g1 - (2 + Dt exp(— ud)}, (30
experimentg9].

The analytical solution obtained, although it has the exact 1 I(1-1)
center and half-width, is not satisfactory in two respects. AR=2 P,(cos&);{exp(— g,t)[mE,@

First, at very early times, expgt) — 1 for all I; hence, one '

L exp- gt

21+
4

™

FO(s,50,1) = exp— ua0) >
|

cannot ensure that summation oves convergent. Second, (I+D(1+2) o 1P g (I+ 1) @
particles at the front edge of the Gaussian distribution travel * 2l +3 o 2l — 1El * 2l +3 E
faster than the spead thus violating causality.
t2(21 + 1)
E— exp(— ,ust)} . (31

Ill. SEPARATING THE BALLISTIC COMPONENT FROM

THE SCATTERED COMPONENT The expressions for the other components of the first and

second cumulants are unchanged, provide&@l]sy,t) in G

In order to make the summation overconvergent, we in Sec. Il are replaced b¥®(s,sy,t). Note that Eq.(28)
separate the ballistic component from the tdtals,t), and  actually is equal to zero a#s, and there is no ballistic
compute the cumulants for the scattered comporiéht component in these directions.

X(r,s,t). The replacement of equations in Sec. Il by E@9)—31)

The ballistic component is the solution of the homoge-greatly improves the calculation of cumulants at very early
neous Boltzmann transport equation, which is the transpotimes. By the subtraction introduced above, the terms for
equation, Eq(1), without the “scattering in” ternithe first  largel approach zero, and summation oVvdsecomes con-
term in the right side of Eq(1)]. The solution of the ballistic vergent at very early times. When—0, g=ufl1-a/(2l
component is given by +1)] [see Eq.(7)] approachesu for largel, f(g,—g+1) =t

041202-4



ANALYTICAL FORM OF THE PARTICLE... PHYSICAL REVIEW E 71, 041202(2009

-5 -4
10
1851 187
R analytical .. —— 10th order
16} Monte-Carlo 16} ‘ - - 2nd order
« Monte Carlo
14 - --- diffusion
14t 4l wa ®
-45 g
L 12+
1.2 @
&
B 1 2
% =
208 w 08f
R= .g
o6l § 06F
—
< 04f
DA 7 2 4 B 8 V|D 12 14 16 18 2 2‘
ok t (unitof | /v = 02t ; 1
D d 1 1 1 1 1 1 1 1
0 . . L 1] 5 10 15 20 25 30 35 40

8 10 12 14 16 18 20
t (unitof i /v)

o
N
N
o}k

t (unitof 1/v)

FIG. 4. Time-resolved profile of transmitted light in an infinite
uniform medium, computed using the tenth order cumulant solution
(solid curve, the second order cumulant solutiédotted curve
Halnd the diffusion approximatiofthick dots curvg compared with
that of the Monte Carlo simulatio(discrete dots The detector is
located atz=6l;, from the source along the incident direction, and
H*le received direction i=0. The Heyney-Greenstein phase func-
tion with g=0.9 is used, and the absorption coefficient,£0.

FIG. 3. Time-resolved profile of the backscatte(&80° photon
intensity inside a disk with center at0, radiusR=1l, thickness
dz=0.1y, and the received solid angtecos6=0.001, normalized
to inject one photon. The Heyney-Greenstein phase function wit
g=0.9 is used, and 1/=0. The solid curve is for the second cu-
mulant solution(Gaussian distribution and dots are for the Monte
Carlo simulation. The inset diagram shows the same result draw
using a logarithmic scale for intensity.

(-4 _ 2 . that move along near forward directions. In the following,
[see Eq_.(lO)], and E.I =t /2 [see Egs(16-(19)], which two approaches are used for overcoming this fay: in-
results in cancellation in the summand for lafdgat very . X ) . g
cluding higher cumulants; an(B) introducing a reshaped

early times. I
An example of successful use of this replacement is théjlstnbutmn.

calculation of backscattering. Wheix 180°,P,(cos#)=1 or
-1, depending on whethéiis even or odd. The compute
at very early times using E@8) oscillates with a cutoff of. We have performed calculations including the higher-

But the computedg(s) at very early times using Eq30)  order cumulants to obtain a more accurate shape of the dis-
becomes stable. Calculation shows th%‘i):O at any time tribution. The Codes for calculation are designed based on a

A. Calculation including high-order cumulants

when #=180°. formula derived in Ref[8].
Figure 3 shows the computed time profile of the back- Figure 4 showsl(r,s,t) with the detector located at
scattering intensity®(r ,s,t) at a detector centering at0 =6l in front of the source and receiving direction aloéig

and received at an angle=180°, which actually is the total =0, computed using the analytical cumulant solution up to
backscattering intensity(r ,s,t) becauses#s, compared tenth order of the cumulantsolid curve, up to the second
with the Monte Carlo simulation. The absolute value of theorder cumulantsdotted curvg in the diffusion approxima-
intensity, as well as the shape of the time-resolved profiletion (thick dotted curvg and the Monte Carlo simulation
computed using our analytical cumulant solution of the BTE(discrete dots The figure shows that the tenth order cumu-
match well with those of the Monte Carlo simulation. The lant solution is located in the middle of the data obtained by
inset diagram is the same result drawn using a logarithmi¢he Monte Carlo simulation, anidr ,s,t) ~0 before the bal-
scale for intensity. Note that this result of backscatteringistic time t,=6l,/v. The second order cumulant solution has
based on the solution of the BTE, is for a detector locatedionzerol(r,s,t) before t,, which violates causality. The
near the source, different from other backscattering resultsomputedN(r ,t)/4 using the diffusion model has a large
based on the diffusion model, which is only valid when de-discrepancy with the Monte Carlo simulation, and the diffu-
tector is located at a distance of sevdgafrom the source.  sion solution has more nonzero components beprehich
violates causality.

Using the second order cumulant solution, the distribution
function can be computed very fast. The associated Legendre

If the cumulants with orden>2 are assumed all zero, the functions can be quickly computed using recurrence relations
distribution becomes Gaussian. The Gaussian distribution igith accuracy limited by the computer machine error. It
accurate at long times. At early times, particles at the frontakes 1 min to produce ¥@ata points of(r,s,t) on a per-
edge of the distribution travel faster than the free speed o$onal computer. On the other hand, in order to reduce the
the particles, thus violating causality, especially for particlesstatistical fluctuation to the level shown in Fig. 4°¥vents

IV. SHAPE OF THE PARTICLE DISTRIBUTION
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are counted in the Monte Carlo simulation, which takes tens 877

of hours computation time on a personal computer. Compu- —— Reshaped .
tation of high-order cumulants also is a cumbersome task 08p |---- honaufs'gnl
because the number of involved terms rapidly grows with : ome -aro

increase of the ordar. Also, for a distribution function that 305}
is positive definite, the Bust theorem states that the existenc
of nonzero cumulants of any order higher than 2 will be . 04r
. [»)
accompanied by nonzero cumulants of all ordé. There- =2
fore, no matter how the cutoff at a finite high orderis 303
taken, the cumulant solution of the BTE cannot be regardec
as exact. §n.z L

B. Reshaping the particle distribution o1k

For practical applications, we use a semiphenomenologi-

— r-— -
cal model. The Gaussian distribution is replaced by a o; o y S = 3 —
different-shaped form, which maintains the correct center po- z (unitof 1) o
sition and the correct half-width of the distribution. This dis- ¥
tribution satisfies causality, namell(r ,s,t)=0 outside the FIG. 5. The 1D spatial photon density at titve2l,/v, obtained

ballistic limit vt. There are an infinite number of choices of by the reshaped form qug) (Sohd Curve and the Gaussian form
shape of the distribution under the above conditions. Wedashed curve compared with that of the Monte Carlo simulation
choose a simple analytical form as discussed later. At longdots. The Heyney-Greenstein phase function wgth0.9 is used,
times, the half-width of the distribution~ (4B)*2, with B and 14,=0. In the figure, the unit on theaxis isl,; R¢ is the center
shown in Eq.(11), spreads as$'% hence,oc<ut at larget, position of the distribution computed by the cumulant solutns

and the Gaussian distribution at long times with half-width the distance between the origin of the new coordinates and the
can be regarded as completely inside the ballistic sphere. Tr&gurce.

reshaped distribution df(r,s,t) hence should approach the

Gaussian distribution at long times. >0
FASI ' 34
1. 1D density AU % 7<0. 34
We first discuss the one-dimensional density as an ex- o
ample to explain our model. At the ballistic limit Z=Z,, N(2) reduces to zero, ani(Z)

The Gaussian distribution of 1D density is described by =0 whenZz is outside ofz,. The parameteb in Eq. (33) can

B 1o oo be determined by normalization; the parametersz,) can
N(2) = (47D pt)"exf~ (2= R)Y(4D20)], (32)  pe determined by fitting the center and half-width of the

whereRS andD,, are given in Eqs(21) and(22). As shown  distribution. This fit requires

in Fig. 5, although the 1D Gaussian spatial distributftive

dashed curveat timet=2l,,/v, EqQ.(32), has the correct cen- _

ter and half-width, the curve deviates from the distribution N@)dz=1, (35)

computed by the Monte Carlo simulatigdots, and a re-

markable part of the distribution appears outside the ballistic

limit vt=2l,. At early times the spatial distribution is not | = o

symmetric about the centd®*. When R° moves from the @=| NOdz=R, -z, (36)

source toward the forward side, causality prohibits particles

appearing beyondt. This requires the particles in the for-

ward side to be squeezed in a narrow region betvweand _ R _

vt. For a balance of the parts of the distribution in the for- @)e= | 2-@)°N@dz=2D 1. (37)

ward and backward sides &F, the peak of the distribution

should move to a point at the forwa}rd side and the height offhe integrals in Eqs(35—(37) can be analytically per-
the peak should increase. The earlier the tifrtbe closeris  formed: they are related to the standard error functibe

R® to vt, and the asymmetry of the distribution becomesincomplete gamma function, or the confluent hypergeometric
stronger. Based on this observation we propose the followingnction of the first kingt

analytical expression(l) to move the peak position of the

distribution fromRS to z,, where the parametez, will be B, 2

determined later(2) to take this point as the origin of new FOB) =f eVdy=—erf(B), (39)
coordinates; an¢B) to use the following form of the shape of 0 2

the 1D density in the new coordinates:

N@) =bexp(- 21 - Z2)?], (33

A 1 2
FO(B) = f e¥ydy=-[1-€e7], (39
where 0 2
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B 1 0.025
@n)( Ry = ~y2\ 20y = = _ (2n-2)( o\ _ p2n-1,-p> . Reshaped
F(B) L e yTdy 2[(2n DFE2(B) - e P ], - - . Monts Carlo
& * — - Gaussian
(40) =~ el
'-.a
B 8
|:(2n+l)(ﬁ) — f e—y2y2n+1dy: }[ZH |:(2n—1)(’8) _ ’BZne—ﬁz]_ \§_U.U15 i
2
0
(41) ‘g 0.01
For nonlinear fitting a difficulty is how to quickly find a E
global minimum. The optimization codes require setting a *gﬂﬂ%_ ;
good initial value of the parameters, so the obtained local & /
minimum is the true global minimum. Since we have no P
experience for setting good initial parameters at a specia 0 ) i ) i i )
0 2 4 6 8 10 12 14

time, the following procedure is used. At the long time limit
z.~R¢ and o?~ (4D, pt)™, the distribution approaches the
original Gaussian distribution. We make a nonlinear fitting at
a point of long timet,,,, using these values of the parameters

as initial _Values' Th?n’ we make a f'mng, t,?ft_‘l:tm_m’ direction, obtained by the reshaped form ER) (solid curve and
where At is a small time mtc_arval, with the initial values of . c2ussian forrtdashed curve compared with that of the Monte
parameters from those obtainedtgtto produce parameters cqy g simulation(doty. The Heyney-Greenstein phase function

atty-,. Step by step, the parameters in the whole time periogith g=0.9 is used, and the absorption coefficient,£0.
can be computed. Our test shows that the fitting program

using this procedure runs quickly, with very small fitting
error, up to a certain short time limit. f ~\ _ (T2 3= _

The solid curve in Fig. 5 shows the reshaped spatial dis- [F codx) - @FNIMAT = 2Dt, (46
tribution, Eq.(33), of 1D density at timé=2I,,/v, using the
Heyney-Greenstein phase function wgk 0.9, which satis-
fies causality and matches the Monte Carlo result much bet-
ter than the Gaussian distribution.

t (unitof 1 /v)

FIG. 6. Time-resolved profile of 3D photon density, where the
detector is located at=3l;, from the source along the incident

f [T sin(y) I>N(T)dF = 4D, wt. (47)

2. 3D density In the above integrad® = 27#72dT d cog’y), integration over

In this case the ballistic limit is represented by a spherecan be analytically performed, and integration oyes per-
with center located at the source position and the radius formed numerically.
We move the peak position of the distribution frd#h to z, Figure 6 shows the computed time profile of the 3D den-
along thes,=2 direction, take this point as the origin of new sity N(r,t), with the source at the origin and the detector
coordinates, and use the following form of the shape of thdocated atr =(0,0,3,,), using the Heyney-Greenstein phase
3D density as a function of position in the new coordinatesfunction with g=0.9. The solid curve is for the reshaped
T form using Eq.(42). The dashed curve is for the Gaussian
_ . form, and the dots are for the Monte Carlo simulation. The
N() = b ex - a(0)7F][1 - F/F")7], (42)  results clearly demonstrate an improvement by use of the
reshaped form over use of the Gaussian form. The nonzero
intensity beforet,=3l;/v in the reshaped form has been
completely removed, while the Gaussian distribution has
nonzero components befotg. The reshaped time profile
matches with the result of the Monte Carlo simulation in

andN(T)=0 whent>T", whereY is the polar angle of in
the new coordinates, afd is the distance between the new
origin and the point obtained by extrapolatingo the sur-
face of the ballistic sphere,

=t 2 _ 2 i\ T2 _ ~nd most of the time period, but the peak values are about 20%
r=lwy ngmz(X)] CoIX)Z: (43 lower. The errors are much smaller than those of the Gauss-
In Eq. (42) a(%) is defined by ian distribution. By integration over time, the density for the
steady state can be obtained. The difference in the steady
a(y)?= a% co(y) + ai Sirt(y). (44) state density between the reshaped analytical model and the

Monte Carlo simulation is about 3%.
The parameterd can be determined by normalization; the
parameterdas, | ,z,) are determined by fitting the center 3. Distribution function 19(r, s 1)

and half-width of the distribution. This fit requires .
When the detector is located less thdp Bom the source

s in a medium with largeg factor, the distribution function
@FJ T cogX)NT) A = RS - 7, (450 19(r,s,t) is highly anisotropic, and the intensity received
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FIG. 7. Schematic diagram describing the geometry of the par- oomzh |
ticle spatial distribution for scattering along a directi®# so. At a ’ ki .
certain timet, the center of the distribution is located & The o 3 - 15%;&"153'&—1‘6
half-width of the spread is characterized by an ellipsgiee gray t (unitofl /v)
area. The large sphere represents the ballistic limit. The origin of i
the new coordinates is set by extending frarf to z. 7" is the FIG. 8. Time-resolved profile of photon distribution function,

point obtained by extrapolating a positi@n(in the new cggrdi- for light directions #= (a) 0 and (b) 30°, where the detector is

nates to the surface of the ballistic sphere, and the lengths  |ocated atz=3l, from the source along the incident direction, ob-

determined by Eq(43). tained by the reshaped form E@2) (solid curve$ and the Gauss-
ian form (dashed curvye compared with that of the Monte Carlo

strongly depends on the angle. One needs to use the photeimulation (dots. The Heyney-Greenstein phase function wih

distribution functionl®(r ,s,t) instead of the photon density =0.9 is used, and the absorption coefficienk, £0.

N(r,t).

In this case the center positiof, as a function ofs,t), is a(%, %)%= o cod(¥) + o sir(Y)cof(P)
not located on the axis at incident directigp Without loss 5 5 ~
of generality, we set the scattering plafses,) as thex-o-z + a5 Sir(y) sir(e), (49

plane. The center position now is locatedrét(r:,0,rd).

The orientations and lengths of the axes of the ellipsoidwherey and % are, separately, the polar angle and the azi-
which characterize the half-width of the spread of the diStri-mutha| ang|e of positioﬁf in the new coordinates. The pa-
bution, can be computed as follows. The nonzero comporameters(ay, ay, a5, 2,) are determined by fitting the center
nents for the second cumulant now d&,B,;,B;2By)),  |r¢| and lengths of the three axes of the ellipsoid character-
expressed in Eq11). By, represents the length of one axis of jzing the half-width of the distribution. In many cases, the
the ellipsoid, perpendicular to the scattering plane. By diagoellipsoid can be approximately treated as an ellipsoid of

nalizing the matrix revolution; the length of the axis of the ellipsoid along the
B,, B direction is approximateily equal to thqt alpng fhdirection,
5. B | (48)  and thus the computation can be simplified. The reshaped
Xz 2z distribution function!®(r,s,t) for a certain directiors is

the lengths and directions of the other two axes of the ellipnormalized toF®(s, s, t).
soid on the scattering plane can be obtained. In fact, calcu- Figure 8 shows the computed time profile of the distribu-
lation shows that the direction of is also the direction of tion functionl®(r,s,t), when the detector is located df,3n
one axis of the ellipsoid, since at a certain titiiee direction  front of the source, using the Heyney-Greenstein phase func-
r¢ can replaces as the unique special direction in the scat-tion with g=0.9. Figures 8) and 8b) are, separately, for
tering plane. In order to reshape the distribution we choose different directions of lighs: =0 and 30°. The solid curves
new?z axis along the ¢ direction, and move the peak position are for the reshaped form using E@2) and the dashed
of the distribution from|r9 to z, taking this point as the curve is for the Gaussian form. The dots are for the Monte
origin of new coordinate$x,y=y,7), as shown schemati- Carlo simulation. Anisotropic distribution is shown by com-
cally in Fig. 7. paring Figs. 8) and 8b). The reshaped distribution removes
In the new coordinates we use a shaped form similar tantensity before,=3l,/v, which appears in the Gaussian dis-
that of the 3D density Eq$42), while a(y) in Eq. (42) is tribution. The reshaped distribution matches the Monte Carlo
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2510“‘ . using the above fitting procedure uptie 4l /v for the 3D
. — Reshaped case(up tot=2l/v for 1D density. The Monte Carlo simu-
181 . " ﬁ”o‘ﬂf:‘g';ﬂo lation is more time consuming in this time region. This
16+ model may work well forg<<0.9 in the above time region,
2ql . because there is less forward scattering for a smalffactor.
' 3 The fitting error begins to increase during,® <t<4l,/v.
12f (@)0=0° At early timet<3l/v, r® becomes very close to the ballistic

limit vt; the front edge of the distribution almost perpendicu-
larly jumps at the positiomt. In this case, the parameter
~ypt in our model, is difficult to adjust through the fitting
program. A more suitable model in this early time period is
needed. Of cause, Monte Carlo simulation also runs fast for
short times and small spatial regions. Bat the near back-
scattering direction, the Gaussian distribution can be a good
. approximation as shown in Fig. 3, because most particles
L suffer many scattering events to transfer from the forward
direction to the backward direction. Our calculation shows
that the center position® is close to the source fop
~180° and far from the ballistic limit; hence, reshaping has
little effect on the backscattering case.
In addition to improving convergence, separating the bal-

08

06

041

0.2¢

I(r,s,0) [unitof 1/(1,>STR)]

o8t
al listic component from the scattered component also provides
’ a more appropriate time-resolved profile for transmission. In
04r the time-resolved transmission profile the ballistic compo-
02tk nent is described by a sharp jump exactly at timesepa-
rated from the later scattered component. The intensity of the
% 2 14 ballistic component, compared to the scattered component,

t (unitof 1/v) strongly depends on trgefactor. Forg=0, l;,=I,, the ballistic
component decays to efpl)=0.368 at distancell But for

FIG. 9. Time-resolved profile of photon distribution function, g=0.9 it decays to exp-10)=4.54x 10°° at 1l,, becausd,,
for light directions 6= (a) 0 and (b) 30°, where the detector is =10 The jump of the ballistic component can be seen in
located atz=4l;, from the source al_ong the incident direction. Other experiments of transmission of light for a medium of small
parameters are the same as in Fig. 8. sized scatterersmallg facton, but is difficult to observe for

a medium of large sized scatterdtarge g facton. Our for-
result much better than the Gaussian distribution, but thenula presented in Sec. Il provides a good estimation for
peak value is about 40% lower than that of the Monte Carldoth small and largg factors by explicitly separating these
simulation. Integrating over time shows that the difference intwo components.
the steady state distribution function between the reshaped Using the obtained analytical expressions, the distribution
analytical model and the Monte Carlo simulation is aboutl(r,s,t) can be computed very fast. The cumulant solution of
7%. The ratio of the peak value a=30° is about 60% of the BTE has been extended to the case of a polarized photon
that atf=0, which shows stronger anisotropydat 3|, com-  distribution [11], and to semi-infinite and slab geometries
pared to that atl=5I;, shown in Fig. 2. [12]. Using a perturbation method, the distributitin,s,t)

Figure 9 shows the distribution functidff(r,s,t) when  in a weak heterogeneous medium can be calculated based on
the detector is located atl4in front of the source. The the cumulant solution of the BTEL2]. The nonlinear effect
reshaped distribution matches the Monte Carlo result muckor strongly heterogeneous objects inside a medium can also
better than that atl3. It shows that the peak intensity at,4 be calculated using a correction of the “self-energy” diagram
is about one order of magnitude smaller than thatlatl3ut  [13]. Hence, the analytical form of the solution of the BTE
intensity decays with time more slowly at,dthan at 3. may have many different applications.

In summary, the analytical cumulant solution of the Bolt-
zmann transport equation is improved in two respects. The
ballistic component is separated and the cumulants for the

While causality, together with the correct center and half-scattered component are computed. This treatment ensures
width of the distribution, are major controlling factors in that summation-over is convergent. We replace the Gauss-
determining the shape and the range of the particle distribuan distribution by a different shaped form, which satisfies
tion, the detailed shapes are, to some extent, different in theausality, and maintains the correct center position and the
different models. Our choice of the reshaped form is basedorrect half-width of the distribution computed by our ana-
on simplicity and ease of computation, which obviously islytical formula. Our results show that the reshaped distribu-
not the only available choice. The initial results show that fortion matches that obtained by the Monte Carlo simulation
g=0.9 the parameters in our model can be quickly obtainednuch better than does the Gaussian distribution.

V. DISCUSSION
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