COMBINING RATIONAL EXPRESSIONS

A rational expression is a quotient of polynomials such as $\frac{3x^2 - 4x + 2}{x^3 + 2x^2 - 4}$. To combine rational

expressions such as $\frac{2x+1}{x^2-4} - \frac{3x+2}{x^2-6x+8}$, we follow the same steps as we did for fractions, namely:

- Find the least common denominator (LCD)
- Rewrite each fraction as an equivalent fraction with the LCD
- Combine the numerators

(See the brush-up materials for operations on fractions if you need a review.)

Remember that when working with rational expressions, we can never have a value for a variable that will make our denominator zero.

Example 1: $\frac{2}{x+3} + \frac{3}{x}$

Solution:

The LCD of the two denominators is x(x + 3).

Rewriting each fraction as an equivalent fraction with this LCD, we get:

$$\frac{2}{x+3} = \frac{2x}{(x)x+3}$$
 and $\frac{3}{x} = \frac{3(x+3)}{x(x+3)} = \frac{3x+9}{x(x+3)}$

Combining the numerators, we get: $\frac{2x}{(x)x+3} + \frac{3x+9}{x(x+3)} = \frac{5x+9}{x(x+3)}$

When combining rational expressions, sometimes finding the LCD can be a challenging step. Look at the next example to see why.

Example 2:
$$\frac{2x+1}{x^2-4} - \frac{3x+2}{x^2-6x+8}$$

Solution:

To find the LCD of $\frac{2x+1}{x^2-4} - \frac{3x+2}{x^2-6x+8}$, we first factor the denominators to obtain $\frac{2x+1}{(x+2)(x-2)} - \frac{3x+2}{(x-4)(x-2)}.$

The LCD must include the factors (x+2), (x-4), and (x-2). Each fraction can be written as an equivalent fraction with the denominator (x+2)(x-4)(x-2). Altogether,

$$\frac{2x+1}{(x+2)(x-2)} - \frac{3x+2}{(x-4)(x-2)} = \frac{(2x+1)}{(x+2)(x-2)} \cdot \frac{(x-4)}{(x-4)} - \frac{(3x+2)}{(x-4)(x-2)} \cdot \frac{(x+2)}{(x+2)} = \frac{(2x+1)}{(x-4)(x-2)} \cdot \frac{(x+2)}{(x+2)(x-2)} = \frac{(2x+1)}{(x-4)(x-2)} \cdot \frac{(x-4)}{(x-4)(x-2)} \cdot \frac{(x-4)}{(x-4)(x-2)} \cdot \frac{(x-4)}{(x-4)(x-2)} = \frac{(2x+1)}{(x-4)(x-2)} \cdot \frac{(x-4)}{(x-4)(x-2)} \cdot \frac{(x-4)}{(x-4)(x-2)} \cdot \frac{(x-4)}{(x-4)(x-2)} \cdot \frac{(x-4)}{(x-4)(x-2)} = \frac{(x-4)}{(x-4)(x-2)} \cdot \frac{(x-4)}{(x-4)(x-2)} \cdot \frac{(x-4)}{(x-4)(x-2)} \cdot \frac{(x-4)}{(x-4)(x-2)} \cdot \frac{(x-4)}{(x-4)(x-2)} \cdot \frac{(x-4)}{(x-4)(x-2)} = \frac{(x-4)}{(x-4)(x-2)} \cdot \frac{(x-4)}{(x-4)(x-2)} \cdot \frac{(x-4)}{(x-4)(x-2)} \cdot \frac{(x-4)}{(x-4)(x-2)} = \frac{(x-4)}{(x-4)(x-2)} \cdot \frac{(x-4)}{(x-4)(x-2)} \cdot \frac{(x-4)}{(x-4)(x-2)} \cdot \frac{(x-4)}{(x-4)(x-2)} = \frac{(x-4)}{(x-4)(x-2)} \cdot \frac{(x$$

$$\frac{(2x+1)(x-4)-(3x+2)(x+2)}{(x+2)(x-2)(x-4)} = \frac{2x^2-7x-4-(3x^2+8x+4)}{(x+2)(x-2)(x-4)} =$$

$$\frac{2x^2 - 7x - 4 - 3x^2 - 8x - 4}{(x+2)(x-2)(x-4)} = \frac{-x^2 - 15x - 8}{(x+2)(x-2)(x-4)} \ .$$

IMPORTANT:

- It is necessary to put a numerator that contain more than one term in parentheses when you are finding an equivalent fraction.
- Be sure that when you multiply out an expression like (3x+2)(x+2) that you keep this result in parentheses so that you then subtract the entire quantity.
- Try to factor the numerator, to see if any cancellation is possible. In this case, the numerator does not factor.

Practice Exercises:

1. Find the LCD of the following groups of fractions:

a)
$$\frac{2}{5x}$$
, $\frac{3x}{4x^2}$, and $\frac{4}{3}$ b) $\frac{3}{x^2 + x - 6}$ and $\frac{5x}{2x + 6}$

2. Simplify:

a)
$$\frac{5}{3x} - \frac{2}{x^2} + \frac{3}{2x}$$
 b) $\frac{3}{x+5} - \frac{1}{x}$ c) $\frac{3}{y+6} + \frac{4}{y-3}$ d) $\frac{x}{x-4} + \frac{5}{x+5} - \frac{11x-8}{x^2+x-20}$
e) $5 - \frac{x-2}{x+1}$ f) $\frac{4x+1}{x-8} - \frac{3x+2}{x+4} - \frac{49x+4}{x^2-4x-32}$

Answers:

1. a)
$$60x^2$$
 b) $2(x+3)(x-2)$

2. a)
$$\frac{19x-12}{6x^2}$$
 b) $\frac{2x-5}{x(x+5)}$ c) $\frac{7y+15}{(y+6)(y-3)}$
d) $\frac{x+3}{x+5}$ e) $\frac{4x+7}{x+1}$ f) $\frac{x-2}{x+4}$