COMBINING RATIONAL EXPRESSIONS

A rational expression is a quotient of polynomials such as $\frac{3 x^{2}-4 x+2}{x^{3}+2 x^{2}-4}$. To combine rational expressions such as $\frac{2 x+1}{x^{2}-4}-\frac{3 x+2}{x^{2}-6 x+8}$, we follow the same steps as we did for fractions, namely:

- Find the least common denominator (LCD)
- Rewrite each fraction as an equivalent fraction with the LCD
- Combine the numerators
(See the brush-up materials for operations on fractions if you need a review.)
Remember that when working with rational expressions, we can never have a value for a variable that will make our denominator zero.
Example 1: $\frac{2}{x+3}+\frac{3}{x}$

Solution:

The LCD of the two denominators is $x(x+3)$.
Rewriting each fraction as an equivalent fraction with this LCD, we get:

$$
\frac{2}{x+3}=\frac{2 x}{(x) x+3} \text { and } \frac{3}{x}=\frac{3(x+3)}{x(x+3)}=\frac{3 x+9}{x(x+3)}
$$

Combining the numerators, we get: $\frac{2 x}{(x) x+3}+\frac{3 x+9}{x(x+3)}=\frac{5 x+9}{x(x+3)}$

When combining rational expressions, sometimes finding the LCD can be a challenging step. Look at the next example to see why.

Example 2: $\frac{2 x+1}{x^{2}-4}-\frac{3 x+2}{x^{2}-6 x+8}$

Solution:

To find the LCD of $\frac{2 x+1}{x^{2}-4}-\frac{3 x+2}{x^{2}-6 x+8}$, we first factor the denominators to obtain
$\frac{2 x+1}{(x+2)(x-2)}-\frac{3 x+2}{(x-4)(x-2)}$.
The LCD must include the factors $(x+2),(x-4)$, and $(x-2)$. Each fraction can be written as an equivalent fraction with the denominator $(x+2)(x-4)(x-2)$. Altogether,

$$
\frac{2 x+1}{(x+2)(x-2)}-\frac{3 x+2}{(x-4)(x-2)}=\frac{(2 x+1)}{(x+2)(x-2)} \cdot \frac{(x-4)}{(x-4)}-\frac{(3 x+2)}{(x-4)(x-2)} \cdot \frac{(x+2)}{(x+2)}=
$$

$$
\begin{aligned}
& \frac{(2 x+1)(x-4)-(3 x+2)(x+2)}{(x+2)(x-2)(x-4)}=\frac{2 x^{2}-7 x-4-\left(3 x^{2}+8 x+4\right)}{(x+2)(x-2)(x-4)}= \\
& \frac{2 x^{2}-7 x-4-3 x^{2}-8 x-4}{(x+2)(x-2)(x-4)}=\frac{-x^{2}-15 x-8}{(x+2)(x-2)(x-4)} .
\end{aligned}
$$

IMPORTANT:

- It is necessary to put a numerator that contain more than one term in parentheses when you are finding an equivalent fraction.
- Be sure that when you multiply out an expression like $(3 x+2)(x+2)$ that you keep this result in parentheses so that you then subtract the entire quantity.
- Try to factor the numerator, to see if any cancellation is possible. In this case, the numerator does not factor.

Practice Exercises:

1. Find the LCD of the following groups of fractions:
a) $\frac{2}{5 x}, \frac{3 x}{4 x^{2}}$, and $\frac{4}{3}$
b) $\frac{3}{x^{2}+x-6}$ and $\frac{5 x}{2 x+6}$
2. Simplify:
a) $\frac{5}{3 x}-\frac{2}{x^{2}}+\frac{3}{2 x}$
b) $\frac{3}{x+5}-\frac{1}{x}$
c) $\frac{3}{y+6}+\frac{4}{y-3}$
d) $\frac{x}{x-4}+\frac{5}{x+5}-\frac{11 x-8}{x^{2}+x-20}$
e) $5-\frac{x-2}{x+1}$
f) $\frac{4 x+1}{x-8}-\frac{3 x+2}{x+4}-\frac{49 x+4}{x^{2}-4 x-32}$

Answers:

1.

a) $60 x^{2}$
b) $2(x+3)(x-2)$
2.
a) $\frac{19 x-12}{6 x^{2}}$
b) $\frac{2 x-5}{x(x+5)}$
c) $\frac{7 y+15}{(y+6)(y-3)}$
d) $\frac{x+3}{x+5}$
e) $\frac{4 x+7}{x+1}$
f) $\frac{x-2}{x+4}$

