Integrals and Antiderivatives

1. Definition of Definite Integral

If f is a function defined on $[\mathrm{a}, \mathrm{b}]$, the definite integral of f from a to b is the number (x_{i}^{*} are sample points in the subintervals $\left[x_{i-1}, x_{i}\right]$. These sample points could be left endpoints or right endpoints or any numbers between the endpoints)

$$
\int_{a}^{b} f(x) d x=\lim _{\max \Delta x_{i} \rightarrow 0} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{i}
$$

provided that this limit exists. If it does exist, we say that f is integrable on $[\mathrm{a}, \mathrm{b}]$.
2. Theorem (it is much simpler to use than Definition of Infinite Integral

If f is integrable on $[\mathrm{a}, \mathrm{b}]$, then

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x_{i}
$$

Where $\Delta x=\frac{b-a}{n}$ and $x_{i}=a+i \Delta x$

Example: Evaluate $\int_{0}^{3}\left(x^{3}-6 x\right)$
Solution: $\Delta x=\frac{b-a}{n}=\frac{3-0}{n}=\frac{3}{n}$
Thus, $x_{0}=0, x_{1}=\frac{3}{n}, x_{2}=\frac{6}{n} x_{3}=\frac{9}{n}$, and, in general, $x_{i}=\frac{3 i}{n}$ Since we are using right endpoints, we can use Theorem 4:

$$
\begin{aligned}
\int_{0}^{3} x^{3}-6 x d x & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x_{i}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(\frac{3 i}{n}\right) \frac{3}{n} \\
& =\lim _{n \rightarrow \infty} \frac{3}{n} \sum_{i=1}^{n}\left[\left(\frac{3 i}{n}\right)^{3}-6\left(\frac{3 i}{n}\right)\right] \\
& \left.=\lim _{n \rightarrow \infty} \frac{3}{n} \sum_{i=1}^{n}\left[\frac{27}{n^{3}} i^{3}-\frac{18 i}{n}\right)\right] \\
& =\lim _{n \rightarrow \infty} \frac{81}{n^{4}} \sum_{i=1}^{n} i^{3}-\frac{54 \sum_{i=1}^{n} i}{n^{2}} \\
& =\lim _{n \rightarrow \infty}\left\{\frac{81}{n^{4}}\left[\frac{n(n+1)}{2}\right]^{2}-\frac{54}{n^{2}} \frac{n(n+1)}{2}\right\} \\
& =\lim _{n \rightarrow \infty}\left[\frac{81}{4}\left(1+\frac{1}{n}\right)^{2}-27\left(1+\frac{1}{n}\right]\right. \\
& =\frac{81}{4}-27=\frac{-27}{4}
\end{aligned}
$$

Practice:

1. $\int_{1}^{2} y^{2}+y^{-2} d y$
2. $\int_{4}^{0} \sqrt{t}(t-2) d t$

Solutions:

1. $\frac{17}{6}$
2. $-\frac{32}{15}$

Indefinite Integral

1. the notation $\int f(\mathrm{x}) d x=F(x)$ is traditionally used for an antiderivative of f and is called an indefinite integral.

Thus $\int f(\mathrm{x}) d x=F(x)$ Means $F^{\prime}=f(\mathrm{x})$
Note: You should distinguish carefully between definite and indefinite integrals. A definite integral $\int_{a}^{b} f(\mathbf{x}) \boldsymbol{d} \boldsymbol{x}$ is a number, whereas an indefinite integral $\int f(\mathbf{x}) \boldsymbol{d x}$ is a function (or family of functions).

Example
$\int \cos d x=\sin x \quad \int \frac{1}{x}=\ln (x)$
Example
Find the general indefinite integral $\int\left(10 x^{4}-2 \sec ^{2} x\right) d x$
Solution: $\int\left(10 x^{4}-2 \sec ^{2} x\right) d x=10 \int x^{4} d x-2 \int \sec ^{2} x$

$$
\begin{aligned}
& =10 \frac{x^{5}}{5}-2 \tan x+c \\
& =2 x^{5}-2 \tan x+c
\end{aligned}
$$

2. Table of Indefinite Integral

$\frac{d}{d x} x^{n}=n x^{n-1}$	$\int x^{n} d x=\frac{x^{n+1}}{n+1}+C$
$\frac{d}{d x} \sin x=\cos x$	$\int \cos x d x=\sin x+C$
$\frac{d}{d x} \cos x=-\sin x$	$\int \sin x d x=-\cos x+C$
$\frac{d}{d x} \tan x=\sec ^{2} x$	$\int \sec ^{2} x d x=\tan x+C$
$\frac{d}{d x} \cot x=-\csc ^{2} x$	$\int \csc ^{2} x d x=-\cot x+C$
$\frac{d}{d x} \sec x=\sec x \tan x$	$\int \sec ^{2} x \tan x d x=\sec x+C$
$\frac{d}{d x} \csc x=-\csc x \cot x$	$\int \csc x \cot x d x=-\csc x+C$

Antiderivative

Definition: A function F is called an antiderivative of f on an interval of I if $F^{\prime}=f(x)$ for all x in I.
Theorem: if F is an antiderivative of f on an interval I , then the most general antiderivative of f on I is

$$
\mathrm{F}(\mathrm{x})+\mathrm{C}
$$

Where C is an arbitrary constant.
Table of antiderivative formulas:
See Above (Same as Table of Indefinite Integral Table)
Example: Find f if $\mathrm{f}^{\prime}=x \sqrt{x}$ and $\mathrm{f}(1)=2$
Solution: The general antiderivative of $f^{\prime}(x)=x^{\frac{3}{2}}$ is $f(\mathrm{x})=\frac{x^{\frac{5}{2}}}{\frac{5}{2}}=\frac{2}{5} x^{\frac{5}{2}}+\mathrm{C}$
Solving for C , we can use the fact that $f(1)=2$
$f(1)=2 / 5+\mathrm{C}=2$
Solving for C, we can get $C=8 / 5$
So, the solution is $f(\mathrm{x})=\frac{2 x^{\frac{5}{2}}+8}{5}$
Practice:

1. Find the antiderivative of the following function:
a. $f(x)=3 \cos (x)+\frac{2 x^{4}-\sqrt{x}}{x}$
b. $f(x)=(x+1)(2 x-1)$

Solutions:
1.
a. $3 \sin (x)+\frac{1}{2} x^{4}-2 \sqrt{x}+C$
b. $\frac{2 x^{3}}{3}+\frac{x^{2}}{2}-x+C$

