Intermediate Value Theorem

Definition: Suppose that f is continuous on the closed interval [a, b] and let N be any number between $f(\mathrm{a})$ and $f(\mathrm{~b})$, where $f(\mathrm{a}) \neq f(\mathrm{~b})$. Then there exists a number c in (a, b) such that $f(\mathrm{c})=\mathrm{N}$

Example: Show that there is a root of the equation $4 x^{3}-6 x^{2}+3 x-2=0$ between 1 and 2 .
Solution: Let $f(\mathrm{x})=4 x^{3}-6 x^{2}+3 x-2=0$. We are looking for a solution of the given equation, that is, a number c between 1 and 2 such that $\mathrm{f}(\mathrm{c})=0$. Therefore, we take $\mathrm{a}=1, \mathrm{~b}=2$, and $\mathrm{N}=0$. we have

$$
\begin{gathered}
f(1)=4-6+3-2=-1<0 \\
f(2)=32-23+6-2=12>0
\end{gathered}
$$

Thus $f(1)<0<f(2)$ that is, $\mathrm{N}=0$ is a number between and $f(1)$ and $f(2)$. Now f is continuous since it is a polynomial, so the Intermediate Value Theorem says there is a number c between 1 and 2 such that $\mathrm{f}(\mathrm{c})=0$. In other words, the equation has at least one root in the interval $(1,2)$.

Example: Is there a solution to $x^{5}-2 x^{3}-2=0$ between $x=0 \& x=2$?
Solution: At $\mathrm{x}=0$

$$
\begin{aligned}
& f(x)=(0)^{5}-2(0)^{3}-2=-2 \\
& \text { At } \mathrm{x}=2
\end{aligned}
$$

Now, we know that at $\mathrm{x}=0$, the curve is below zero and at $\mathrm{x}=2$ the curve is below zero. And, working with a polynomial, the curve will be continuous, so somewhere in between, the curve must cross $\mathrm{y}=0$. In conclusion, yes, there is a solution to $f(x)=x^{5}-2 x^{3}-2=0$ on the interval [0,2].

Practice:

1. How many zeros does $f(x)=55 x^{3}-60 x^{2}+20 x-2$ have between $x=0$ and $x=6$?
2. How many zeros does $f(x)=x^{4}-3 x^{3}+2 x^{2}-0.1$ have between -0.5 and 2.5 ?
3. When given $f(x)=\frac{3 x+1}{x^{2}-3}$, how many solutions are there to the equation $f(x)=0$?

Solutions:

1. 3
2. 4
3. 1
