Limit

1. Definition of limit

Suppose f(x) is defined when x is near the number a. (This means that f is defined on some open interval that contains a, expect possibly at a itself.)

Then we write $\lim_{n \to \infty} f(x) = L$

And say "the limit of f(x), as x approach a, equals L"

If we can make the values of f(x) arbitrarily close to L (as close to L as we like) by taking x to be sufficiently close to a (on either side of a) but not equal to a.

2. Precise Definition of Limit

Let f be a function defined on some open interval that contains the number a, except possibly at a itself. Then we say the limit of f(x) as x approaches a is L, and we write

$$\lim_{x \to \infty} f(x) = L$$

If for every number $\varepsilon > 0$, there is a corresponding number $\delta > 0$ such that

If $o < |x-a| < \delta$ then. $|f(x)-L| < \varepsilon$

- 3. Calculate the limit
 - I. Direct substitution property: If f is a polynomial or a. rational function and a is in the domain of f, then $\lim_{x \to a} f(x) = f(a)$

Example1: Prove $\lim_{x \to 0} (4x - 5) = 7$

Solution: Let ε be a given positive number. According to Precise Definition with a=3, and L=7, we need to find a number δ such that

If $o < |x-3| < \delta$ then $|(4x-5)-7| < \varepsilon$ But |(4x-5)-7| = |4x-12| = 4|x-3|. Therefore, we want If $o < |x-3| < \delta$ then $4|x-3| < \varepsilon$ Now we notice that $4|x-3| < \varepsilon$, then $|x-3| < \varepsilon/4$, so let's choose $\delta = \varepsilon/4$ So, we can write the following: $o < |x-3| < \delta$ then $4|x-3| < 4\delta = \varepsilon$ Example2 Evaluate $\lim_{h \to 0} \frac{(3+h)^2 - 9}{h}$ Solution: We can simply the function since we cannot use direct substitution. $F(h) = \lim_{h \to 0} \frac{(3+h)^2 - 9}{h} = \frac{(9+6h+h^2) - 9}{h} = \frac{6h+h^2}{h} = 6 + h$ Example 3 $\lim_{x \to 2} x^2 + 2x$ Solution: Direct Substitution $\lim_{x \to 2} (x^2 + 2x) = 2x^2 + 2x^2 = 8$

Limits involving infinity

Definition 1:

The notation $\lim_{x \to a} f(x) = \infty$ means that the values of f(x) can be made arbitrarily large (as large as we please) by taking x sufficiently close to a (either side of a) but not equal to a.

Definition 2:

The line x=a is called a vertical asymptote of the curve y= f(x) if at least one of the following statements is true:

 $\lim_{x \to a} f(x) = \infty \qquad \lim_{x \to a^{-}} f(x) = \infty \qquad \lim_{x \to a^{+}} f(x) = \infty$ $\lim_{x \to a} f(x) = -\infty \qquad \lim_{x \to a^{-}} f(x) = -\infty \qquad \lim_{x \to a^{+}} f(x) = -\infty$

Definition 3:

The line y=L is called a horizontal asymptote of the curve y= f(x) if either $\lim_{x \to \infty} f(x) = L \qquad \lim_{x \to -\infty} f(x) = L$

Definition 4:

The notation $\lim_{x \to \infty} f(x) = \infty$ is used to indicate that the value of f(x) becomes larger as x becomes large. Similar meanings are attached to the following symbols: $\lim_{x \to -\infty} f(x) = -\infty \quad \lim_{x \to \infty} f(x) = -\infty \quad \lim_{x \to -\infty} f(x) = \infty$

Example 1 Find $\lim_{x\to 3^+} \frac{2x}{x-3}$ and $\lim_{x\to 3^-} \frac{2x}{x-3}$ Solution:

If x is close to 3 but larger than 3, then the denominator x-3 is a small positive number and 2x is close to 6. So, the quotient $\frac{2x}{x-3}$ is a large positive number. Thus, intuitively, we see that

$$\lim_{x \to 3^+} \frac{2x}{x-3} = \infty$$

Likewise, if x is close to 3 but smaller than 3, then is a small negative number but 2x is still a positive number (close to 6). So $\frac{2x}{x-3}$ is a numerically large negative number. Thus

$$\lim_{x \to 3^+} \frac{2x}{x-3} = -\infty$$

Therefore x=3 is vertical asymptote.

Example 2 Find $\lim_{x\to\infty} \frac{x^2-1}{x^2+1}$ Solution:

$$\lim_{x \to \infty} \frac{x^2 - 1}{x^2 + 1} = \lim_{x \to \infty} \frac{x^2 + 1 - 2}{x^2 + 1} = \lim_{x \to \infty} 1 - \frac{2}{x^2 + 1}$$

Since x approach infinity, so $\lim_{x\to\infty} 1 - \frac{2}{x^2+1} = 1$ Therefore, y= 1 is horizontal asymptote.

Example 3 $\lim_{x\to\infty} (x^2 - x)$ Note: It would be wrong to write

$$\lim_{x \to \infty} (x^2 - x) = \lim_{x \to \infty} x^2 - \lim_{x \to \infty} x = \infty - \infty = 0$$

Solution:

The Limit Laws can't be applied to infinite limits because ∞ is not a number ($\infty - \infty$)can't be defined). However, we can write

$$\lim_{x \to \infty} (x^2 - x) = \lim_{x \to \infty} x(x - 1) = \infty$$

Continuity

Definition 1:

A function f(x) is continuous at a number a if $\lim_{x \to a} f(x) = f(a)$

Notice that Definition implicitly requires three things if *f* is continuous at a:

- 1. f(a) is defined (that is, a is in the domain of f)
- 2. $\lim_{x \to a} f(x)$ exists 3. $\lim_{x \to a} f(x) = f(a)$

Definition2:

A function f is continuous from the right at a if

 $\lim_{x \to a^+} f(x) = f(a)$

And *f* is continuous from the left at a if

$$\lim_{x \to a^-} f(x) = f(a)$$

Definition3:

A function f is continuous on an interval if it is continuous at every number in the interval. (If f is defined only on one side of an endpoint of the interval, we understand continuous at the endpoint to mean continuous from the right or continuous from the left.)

Theorem: The following types of functions are continuous at every number in their domains: polynomials, rational functions, root functions, trigonometric functions.

Example: Show that the function $f(x)=1-\sqrt{1-x^2}$ is continuous on the interval [-1,1]

Solution: -1<a<1, then using the Limit Laws, we have $\lim_{x \to a} f(x) = \lim_{x \to a} (1 - \sqrt{1 - x^2}) = 1 - \lim_{x \to a} (1 - \sqrt{1 - x^2})$ $= \sqrt{\lim_{x \to a} (1 - x^2)} = 1 - \sqrt{1 - a^2} = f(a)$

Thus, by Definition 1, f is continuous at a if $-1 \le a \le 1$. Similar calculations show that

$$\lim_{x \to -1^+} f(x) = 1 = f(-1) \qquad \lim_{x \to -1^-} f(x) = 1 = f(1)$$

and so f is **continuous** from the right at -1 and continuous from the left at 1. Therefore, according to Definition 3, is continuous on [-1,1].

(The graph of is function is the lower half of the circle)

Differentiability

- 1. Differentiation is the process of finding a derivative
- Connection between differentiation and continuity
 Any differentiable function must be continuous at every point in its domain.
 The converse does not hold: a continuous
 function need not be differentiable. For example, a function with a bend,
 cusp, or vertical tangent may be continuous, but fails to be differentiable at
 the location of the anomaly.
- 3. By the definition of derivative, it is easy to see

$$f'(\mathbf{x}) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$
$$f'(\mathbf{x}) = \lim_{x \to a} \frac{f(x) - f(a)}{a}$$

4. Property of derivative

Multiplication by a constant	f(x) = cf	f'(x) = cf'
Note: Derivative of a		
constant, c, equals 0.		
Power Rule	$f(x) = x^n$	$f(x) = (n)x^{n-1}$
Sum Rule	f + g	f' + g'
Difference Rule	f-g	f' - g'
Product Rule	fg	fg' + gf'
Quotient Rule	$rac{f}{g}$	$\frac{gf'-fg'}{g^2}$
Reciprocal Rule	$\frac{1}{f}$	$\frac{(-f')}{f^2}$

Chain Rule (Composition)	$f \circ g$	$(f \circ g) \times g$
Chain Rule using (")	f(g(x))	f'(g(x))g'(x)
Chain Rule using $\frac{d}{dx}$	$\frac{dy}{dx}$	$\frac{dy}{du}\frac{du}{dx}$

Examples: differentiate

1. $f(x)=\cos(x)$ $f' = -\sin x$ 2. $x^8 + x^5 - 6x - 5 = 8x^7 + 5x^4 - 6$ 3. $\frac{d}{dx}(3x^4) = 3\frac{d}{dx}(x^4) = 3(4x^3) = 12x^3$ 4. Find the derivative of $f(x)=(x^2 + 2x)$ at x=2 $f'(x) = \lim_{\substack{h \to 0 \\ h \to 0}} \frac{f(a+h) - f(a)}{h} = \frac{(a+h)^2 + 2(a+h) - (a^2 + 2a)}{h}$ $= \frac{a^2 + 2ah + h^2 + 2a + 2h - a^2 - 2a}{h} = \frac{2ah + h^2 + 2h}{h} = 2a + h + 2 = 6$

Practice Problems:

Limits:

1. Find the limit of the following:

a.
$$\lim_{x \to 10} \frac{x}{2}$$

b.
$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$$

c.
$$\lim_{x \to \infty} \frac{5x^2 + 1}{3x^2 - x}$$

d.
$$\lim_{x \to \infty} 2x - 7x^3$$

Definition of derivative practice

- 1. Use the definition of the derivative to find f'(-1), where $f(x) = 2x^2 + 1$.
- 2. Use the definition of the derivative to find f'(x), where $f(x) = \frac{1}{\sqrt{(x-4)}}$.

Review Derivative Rules

- 1. Differentiate the following functions
 - a. $f(x) = 4x^3$
 - b. f(x) = 4sin(x)cos(x)

c.
$$f(x) = (3x + 1)^2(x^2 + 2)$$

d. $f(x) = \frac{x^3}{(2x-1)^2}$

Solutions:

Limits:

1.

a. 5 b. 2 c. $\frac{5}{3}$ d. $-\infty$

Definition of Derivative practice:

1.
$$f'(-1) = -4$$

2. $f'(x) = -\frac{1}{2(x-4)^{\frac{3}{2}}}$

Review of Derivative Rules:

1.

a.
$$f'(x) = 12x^2$$

b. $h'(x) = 4\cos^2 x - 4\sin^2 x$
c. $h'(x) = 36x^3 + 18x^2 + 38x + 12$
d. $g'(x) = \frac{2x^5(4x-3)}{(2x-1)^3}$