Limit

1. Definition of limit

Suppose $f(\mathrm{x})$ is defined when x is near the number a. (This means that f is defined on some open interval that contains a, expect possibly at a itself.)
Then we write $\quad \lim _{n \rightarrow \infty} f(x)=L$
And say "the limit of $f(\mathrm{x})$, as x approach a, equals L "
If we can make the values of $f(\mathrm{x})$ arbitrarily close to L (as close to L as we like) by taking x to be sufficiently close to a (on either side of a) but not equal to a.

2. Precise Definition of Limit

Let f be a function defined on some open interval that contains the number a, except possibly at a itself. Then we say the limit of $f(\mathrm{x})$ as x approaches a is L , and we write

$$
\lim _{x \rightarrow \infty} f(x)=L
$$

If for every number $\varepsilon>0$, there is a corresponding number $\delta>0$ such that

$$
\text { If } \quad \mathrm{o}<|\mathrm{x}-\mathrm{a}|<\delta \quad \text { then. } \quad|f(\mathrm{x})-\mathrm{L}|<\varepsilon
$$

3. Calculate the limit
I. Direct substitution property: If f is a polynomial or a. rational function and a is in the domain of f, then $\lim _{x \rightarrow a} f(x)=f(a)$

Example1: Prove $\lim _{n \rightarrow \infty}(4 x-5)=7$
Solution: Let ε be a given positive number. According to Precise Definition with $\mathrm{a}=3$, and $\mathrm{L}=7$, we need to find a number δ such that

If $0<|x-3|<\delta \quad$ then $|(4 x-5)-7|<\varepsilon$
But $|(4 x-5)-7|=|4 x-12|=4|x-3|$. Therefore, we want
If $0<|x-3|<\delta \quad$ then $4|x-3|<\varepsilon$
Now we notice that $4|\mathrm{x}-3|<\varepsilon$, then $|\mathrm{x}-3|<\varepsilon / 4$, so let's choose $\delta=\varepsilon / 4$
So, we can write the following:
$0<|\mathrm{x}-3|<\delta$ then $4|\mathrm{x}-3|<4 \delta=\varepsilon$

Example2 Evaluate $\lim _{h \rightarrow 0} \frac{(3+h)^{2}-9}{h}$
Solution: We can simply the function since we cannot use direct substitution.
$\mathrm{F}(\mathrm{h})=\lim _{h \rightarrow 0} \frac{(3+h)^{2}-9}{h}=\frac{\left(9+6 h+h^{2}\right)-9}{h}=\frac{6 h+h^{2}}{h}=6+h$
Example $3 \lim _{x \rightarrow 2} x^{2}+2 x$
Solution: Direct Substitution $\quad \lim _{x \rightarrow 2}\left(x^{2}+2 x\right)=2 x 2+2 x 2=8$

Limits involving infinity

Definition 1:

The notation $\lim _{x \rightarrow \mathrm{a}} f(x)=\infty$ means that the values of $f(\mathrm{x})$ can be made arbitrarily large (as large as we please) by taking x sufficiently close to a (either side of a) but not equal to a.

Definition 2:

The line $\mathrm{x}=\mathrm{a}$ is called a vertical asymptote of the curve $\mathrm{y}=f(\mathrm{x})$ if at least one of the following statements is true:
$\lim _{x \rightarrow \mathrm{a}} f(x)=\infty$
$\lim _{x \rightarrow \mathrm{a}} f(x)=-\infty$
$\lim _{x \rightarrow a^{-}} f(x)=\infty$

$$
\begin{aligned}
& \lim _{x \rightarrow a^{+}} f(x)=\infty \\
& \quad \lim _{x \rightarrow a^{+}} f(x)=-\infty
\end{aligned}
$$

Definition 3:

The line $\mathrm{y}=\mathrm{L}$ is called a horizontal asymptote of the curve $\mathrm{y}=f(\mathrm{x})$ if either

$$
\lim _{x \rightarrow \infty} f(x)=L \quad \lim _{x \rightarrow-\infty} f(x)=L
$$

Definition 4:

The notation $\lim _{x \rightarrow \infty} f(x)=\infty$ is used to indicate that the value of $f(\mathrm{x})$ becomes
larger as x becomes large. Similar meanings are attached to the following symbols:

$$
\lim _{x \rightarrow-\infty} f(x)=-\infty \lim _{x \rightarrow \infty} f(x)=-\infty \lim _{x \rightarrow-\infty} f(x)=\infty
$$

Example 1

Find $\lim _{x \rightarrow 3^{+}} \frac{2 x}{x-3}$ and $\lim _{x \rightarrow 3^{-}} \frac{2 x}{x-3}$

Solution:

If x is close to 3 but larger than 3 , then the denominator $\mathrm{x}-3$ is a small positive number and 2 x is close to 6 . So, the quotient $\frac{2 x}{x-3}$ is a large positive number. Thus, intuitively, we see that

$$
\lim _{x \rightarrow 3^{+}} \frac{2 x}{x-3}=\infty
$$

Likewise, if x is close to 3 but smaller than 3, then is a small negative number but 2 x is still a positive number (close to 6). So $\frac{2 x}{x-3}$ is a numerically large negative number. Thus

$$
\lim _{x \rightarrow 3^{+}} \frac{2 x}{x-3}=-\infty
$$

Therefore $\mathrm{x}=3$ is vertical asymptote.
Example 2 Find $\lim _{x \rightarrow \infty} \frac{x^{2}-1}{x^{2}+1}$
Solution:

$$
\lim _{x \rightarrow \infty} \frac{x^{2}-1}{x^{2}+1}=\lim _{x \rightarrow \infty} \frac{x^{2}+1-2}{x^{2}+1}=\lim _{x \rightarrow \infty} 1-\frac{2}{x^{2}+1}
$$

Since x approach infinity, so $\lim _{x \rightarrow \infty} 1-\frac{2}{x^{2}+1}=1$
Therefore, $\mathrm{y}=1$ is horizontal asymptote.

Example $3 \lim _{x \rightarrow \infty}\left(x^{2}-x\right)$
Note: It would be wrong to write

$$
\lim _{x \rightarrow \infty}\left(x^{2}-x\right)=\lim _{x \rightarrow \infty} x^{2}-\lim _{x \rightarrow \infty} x=\infty-\infty=0
$$

Solution:
The Limit Laws can't be applied to infinite limits because ∞ is not a number ($\infty-$ ∞)can't be defined). However, we can write

$$
\lim _{x \rightarrow \infty}\left(x^{2}-x\right)=\lim _{x \rightarrow \infty} x(x-1)=\infty
$$

Continuity

Definition 1:

A function $f(\mathrm{x})$ is continuous at a number a if $\lim _{x \rightarrow a} f(x)=f(a)$
Notice that Definition implicitly requires three things if f is continuous at a:

1. $f(a)$ is defined (that is, a is in the domain of f)
2. $\lim _{x \rightarrow a} f(x)$ exists
3. $\lim _{x \rightarrow a} f(x)=f(a)$

Definition2:

A function f is continuous from the right at a if

$$
\lim _{x \rightarrow a^{+}} f(x)=f(a)
$$

And f is continuous from the left at a if

Definition3:

$$
\lim _{x \rightarrow a^{-}} f(x)=f(a)
$$

A function f is continuous on an interval if it is continuous at every number in the interval. (If f is defined only on one side of an endpoint of the interval, we understand continuous at the endpoint to mean continuous from the right or continuous from the left.)

Theorem: The following types of functions are continuous at every number in their domains: polynomials, rational functions, root functions, trigonometric functions.

Example: Show that the function $f(\mathrm{x})=1-\sqrt{1-x^{2}}$ is continuous on the interval $[-1,1]$
Solution: $-1<\mathrm{a}<1$, then using the Limit Laws, we have

$$
\begin{aligned}
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a}\left(1-\sqrt{1-x^{2}}\right) & =1-\lim _{x \rightarrow a}\left(1-\sqrt{1-x^{2}}\right) \\
& =\sqrt{\lim _{x \rightarrow a}\left(1-x^{2}\right)}=1-\sqrt{1-a^{2}}=f(a)
\end{aligned}
$$

Thus, by Definition $1, f$ is continuous at a if $-1<\mathrm{a}<1$. Similar calculations show that

$$
\lim _{x \rightarrow-1^{+}} f(x)=1=f(-1) \quad \lim _{x \rightarrow-1^{-}} f(x)=1=f(1)
$$

and so f is continuous from the right at -1 and continuous from the left at 1 . Therefore, according to Definition 3, is continuous on $[-1,1]$.
(The graph of is function is the lower half of the circle)

Differentiability

1. Differentiation is the process of finding a derivative
2. Connection between differentiation and continuity Any differentiable function must be continuous at every point in its domain. The converse does not hold: a continuous function need not be differentiable. For example, a function with a bend, cusp, or vertical tangent may be continuous, but fails to be differentiable at the location of the anomaly.
3. By the definition of derivative, it is easy to see

$$
\begin{aligned}
f^{\prime}(\mathrm{x}) & =\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \\
f^{\prime}(\mathrm{x}) & =\lim _{x \rightarrow a} \frac{f(x)-f(a)}{a}
\end{aligned}
$$

4. Property of derivative

Multiplication by a constant	$f(x)=c f$	$f^{\prime}(x)=c f^{\prime}$
Note: Derivative of a		
constant, c, equals 0.	$f(x)=x^{n}$	$f(x)=(n) x^{n-1}$
Power Rule	$f+g$	$f^{\prime}+g^{\prime}$
Sum Rule	$f-g$	$f^{\prime}-g^{\prime}$
Difference Rule	$f g$	$f g^{\prime}+g f^{\prime}$
Product Rule	$\frac{f}{g}$	$\frac{g f^{\prime}-f g^{\prime}}{g^{2}}$
Quotient Rule	$\frac{1}{f}$	$\frac{\left(-f^{\prime}\right)}{f^{2}}$
Reciprocal Rule		

Chain Rule (Composition)	$f \circ g$	$(f \circ g) \times g$
Chain Rule using (")	$f(g(x))$	$f^{\prime}(g(x)) g^{\prime}(x)$
Chain Rule using $\frac{d}{d x}$	$\frac{d y}{d x}$	$\frac{d y}{d u} \frac{d u}{d x}$

Examples: differentiate

1. $f(\mathrm{x})=\cos (\mathrm{x}) \quad f^{\prime}=-\sin x$
2. $x^{8}+x^{5}-6 x-5=8 x^{7}+5 x^{4}-6$
3. $\frac{d}{d x}\left(3 x^{4}\right)=3 \frac{d}{d x}\left(x^{4}\right)=3\left(4 x^{3}\right)=12 x^{3}$
4. Find the derivative of $f(\mathrm{x})=\left(x^{2}+2 x\right)$ at $\mathrm{x}=2$

$$
\begin{aligned}
f^{\prime}(\mathrm{x}) & =\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=\frac{(a+h)^{2}+2(a+h)-\left(a^{2}+2 a\right)}{h} \\
& =\frac{a^{2}+2 a h+h^{2}+2 a+2 h-a^{2}-2 a}{h}=\frac{2 a h+h^{2}+2 h}{h}=2 a+h+2=6
\end{aligned}
$$

Practice Problems:

Limits:

1. Find the limit of the following:
a. $\lim _{x \rightarrow 10} \frac{x}{2}$
b. $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}$
c. $\lim _{x \rightarrow \infty} \frac{5 x^{2}+1}{3 x^{2}-x}$
d. $\lim _{x \rightarrow \infty} 2 x-7 x^{3}$

Definition of derivative practice

1. Use the definition of the derivative to find $\mathrm{f}^{\prime}(-1)$, where $f(x)=2 x^{2}+1$.
2. Use the definition of the derivative to find $\mathrm{f}^{\prime}(\mathrm{x})$, where $f(x)=\frac{1}{\sqrt{(x-4)}}$.

Review Derivative Rules

1. Differentiate the following functions
a. $f(x)=4 x^{3}$
b. $f(x)=4 \sin (x) \cos (x)$
c. $f(x)=(3 x+1)^{2}\left(x^{2}+2\right)$
d. $f(x)=\frac{x^{3}}{(2 x-1)^{2}}$

Solutions:

Limits:
1.
a. 5
b. 2
c. $\frac{5}{3}$
d. $-\infty$

Definition of Derivative practice:

1. $f^{\prime}(-1)=-4$
2. $f^{\prime}(x)=-\frac{1}{2(x-4)^{\frac{3}{2}}}$

Review of Derivative Rules:
1.
a. $f^{\prime}(x)=12 x^{2}$
b. $h^{\prime}(x)=4 \cos ^{2} x-4 \sin ^{2} x$
c. $h^{\prime}(x)=36 x^{3}+18 x^{2}+38 x+12$
d. $g^{\prime}(x)=\frac{2 x^{5}(4 x-3)}{(2 x-1)^{3}}$

