The Mean Value Theorem (Fundamental Theorem of Calculus)

Definition:

Let f be a function that satisfies the following hypotheses:

1. f is continuous on the closed interval $[a, b]$.
2. f is differentiable on the open interval (a, b).

Then there is a number c in (a, b) such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Or equivalently, $(b)-f(a)=f^{\prime}(c)(b-a)$

Example: To illustrate the Mean Value Theorem with a specific function, let's consider $f(x)=$ $x^{3}-x, a=0, b=2$.
Solution: Since f is a polynomial, it is continuous and differentiable for all x, so it is certainly continuous on $[0,2]$ and differentiable on (0,2). Therefore, by the Mean Value Theorem, there is a number c in $(0,2)$ such that

$$
f(2)-f(0)=f^{\prime}(c)(2-0)
$$

Now $f(2)=6, \mathrm{f}(0)=0$, and $f^{\prime}(x)=3 x^{2}-1$, so this equation becomes $6=\left(3 c^{2}-1\right) 2=6 c^{2}-2$
which gives $c^{2}=\frac{4}{3}$, that is $\mathrm{c}= \pm 2 / \sqrt{3}$. But c must lie in $(0,2)$, so $\mathrm{c}=2 / \sqrt{3}$.
Example: Suppose that $f(0)=-3$, and $f^{\prime}(x) \leq 5$ for all values of x. How large can possibly be?
Solution: We are given that f is differentiable (and therefore continuous) everywhere. In particular, we can apply the Mean Value Theorem on the interval [0, 2]. There exists a number c such that

$$
\begin{gathered}
f(2)-f(0)=f^{\prime}(c)(2-0) \\
f(2)=\mathrm{f}(0)+2 f^{\prime}(c)=-3+2 f^{\prime}(c)
\end{gathered}
$$

We are given that $f^{\prime}(x) \leq 5$ for all x , so in particular we know that $f^{\prime}(c) \leq 5$. Multiplying both sides of this inequality by 2 , we have $2 f^{\prime}(x) \leq 10$, so

$$
f(2)=-3+2 f^{\prime}(c) \leq-3+10=7
$$

The largest possible value for is 7 .

Practice:

1. Using the fundamental theorem of calculus, explain why taking the integral of $f(x)=x^{-3 / 2}$ over $[-1,1]$ cannot be solved using the integration method defined in calc 1.
2. Evaluate the definite integrals using the Fundamental Theorem of Calculus.
a. $\int 3 x^{2} d x[0,5]$
b. $\int\left(x^{2}-7 x+12\right) d x[0,3]$

Solutions:

1. The function $f(x)=x^{-\frac{3}{2}}$ is not continuous on the interval $[-1,1]$ which violates the fundamental theorem of calculus.
2. Integration questions
a. 125
b. $27 / 2$
