Solving Systems of Linear Equations

There are two algebraic ways of solving a system of equations. Here is a reminder of each.
Example 1: Solve: $2 x+3 y=10$

$$
4 x-3 y=8
$$

Solution

If we add the left-hand sides and the right-hand sides of these equations, the y terms will drop out. We will be left with an equation in x only, which we can solve easily.

$$
\begin{aligned}
2 x+3 y & =10 \\
4 x-3 y & =8 \\
\hline 6 x+0 & =18 \\
x & =3
\end{aligned}
$$

We now know that $x=3$ is part of the solution of the system. We substitute 3 for x in either equation and solve for y.

$$
\begin{aligned}
2 x+3 y & =10 \\
2(3)+3 y & =10 \\
6+3 y & =10 \\
3 y & =4 \\
y & =\frac{4}{3}
\end{aligned}
$$

So, the solution is $\left(3, \frac{4}{3}\right)$.
Example 2: Solve: $2 x+9 y=49$

$$
5 y=31-3 x
$$

Solution:

First we rewrite the equations with the variables in the same order on the same side. That makes everything easier.

$$
\begin{aligned}
& 2 x+9 y=49 \\
& 3 x+5 y=31
\end{aligned}
$$

In order to be able to eliminate one variable, we want the coefficients of x or those of y to be additive inverses. The coefficients of x will be inverses if we multiply the first equation by 3 and the second equation by -2 . Then we can add left-hand and right-hand sides, eliminating x, and solve for y. We get

$$
\begin{array}{rlrl}
6 x+27 y & =147 & & \text { Multiplying by } 3 \\
-6 x-10 y & =-62 \\
\hline 17 y & =85 & & \text { Multiplying by }-2 \\
y & =5 & &
\end{array}
$$

Then we can substitute 5 for y in one of the original equations and solve it for x.

$$
\begin{array}{ll}
3 x+5(5)=31 & \text { Substituting for } \mathrm{x} \\
3 x+25=31 & \\
3 x=6 & \text { Simplifying }
\end{array}
$$

So, the solution is $(2,5)$.
Example 3: Solve: $y=2 x+4$
$6 y+3 x=54$

Solution

The first equation tells us that $y=2 x+4$, so we can substitute $2 x+4$ for y in the second equation:

$$
\begin{aligned}
6 y+3 x & =54 \\
6(x+4)+3 x & =54 \\
12 x+24+3 x & =54 \\
15 x+24 & =54 \\
15 x & =30 \\
x & =2
\end{aligned}
$$

Then we can substitute 2 for x in one of the original equations and solve it for y. The first equation seems easiest.

$$
\begin{array}{ll}
y=2 x+4 & \\
y=2(2)+4 & \text { Substituting for } x \\
y=8 & \text { Simplifying }
\end{array}
$$

We now have $(x, y)=(2,8)$. To check, we substitute these values for x and y in the two equations.

$$
\begin{array}{l|r}
y=2 x+4 & 6 y+3 x=54 \\
8=2(2)+4 & 6(8)+3(2)=54 \\
8=4+4 & 48+6=54 \\
8=8 & 54=54
\end{array}
$$

So, the solution is $(2,8)$.

Exercises: Use either method to solve the systems below.

1. $6 x-8 y=34$
$y=3 x-2$
2. $3 x+2 y=20$
$x+y=8$
3. $4 x+6 y=26$
$6 x-2 y=28$
4. $y=x+1$
$y=-2 x+1$
5. $2 x=3 y-1$
$y=5$

Solutions

1. $(-1,-5)$
2. $(4,4)$
3. $(5,1)$
4. $(0,1)$
5. $(7,5)$
