There are some common mathematical errors that are made by some beginner students. Here is a partial list:

1) Incorrect canceling: $\frac{x}{x+6} \neq \frac{1}{6}$ Think: If x were 1 (or any number) then this could not possible be true!

If instead all terms were multiplied, you can cancel out the $x: \frac{x}{6 x}=\frac{1}{6}$.
2) Forgetting the middle term when squaring: $(x+4)^{2}=x^{2}+16$

When you are squaring a binomial, there is a middle term:
$(x+4)^{2}=(x+4)(x+4)=x^{2}+4 x+4 x+16=x^{2}+8 x+16$.
It is best to simply remember the formula $(a+b)^{2}=a+2 a b+b^{2}$.
Notice again if the terms were multiplied, the procedure would work: $(4 x)^{2}=16 x^{2}$.
3) Splitting terms under the radical sign: $\sqrt{a^{2}+9} \neq a+3$. Think: If $\mathrm{a}=4$ then $\sqrt{4^{2}+9} \neq 7$ Instead, it's true that $\sqrt{9 a^{2}}=3 a$.
4) Forgetting parenthesis: $(x-2)(x+4)-(x+2)(x+4) \neq x^{2}+4 x-2 x-8-x^{2}+4 x+2 x+8$. Instead, it should be $(x-2)(x+4)-(x+2)(x+2)=x^{2}+4 x-2 x-8-\left(x^{2}+4 x+2 x+8\right)$, and then proceed to simplify further.

Practice Exercises:

1. You are probably familiar with the quadratic formula: the solution(s) to a general quadratic equation $a x^{2}+b x+c=0$ is given by $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$. Find the solutions to the equation $x^{2}-2 x-4=0$.
2. Solve the following equation: $\frac{2}{3}-\frac{x+1}{4}=\frac{1}{6}$
3. Simplify: $(2 x+1)^{2}-2(x+1)^{2}$.

Answers:

1. $1 \pm \sqrt{5}$
2. $x=1$
3. $2 x^{2}-1$
