Using Functional Notation

Sometimes, instead of writing an equation like $y=x^{2}+4$, textbooks use the notation $f(x)=x^{2}+4$. In other words, y is replaced by $f(x)$. When this is done, this tells you that the equation is actually a function. That is, it is a special equation in which each x (input) is assigned exactly one y (output). It is not true that all equations determine such a relationship between the variables x and y. For example, for the equation $x^{2}+y^{2}=25$ (whose graph is a circle centered at the origin with radius 5), the number 3 corresponds to both 4 and -4 . You can check that $(3,4)$ and $(3,-4)$ both satisfy the equation.

Functional notation is also useful in some calculations.

Model Problems:

Example 1: Given $f(x)=x^{2}+4$, find:
(a) $f(2)$
(b) $f(-3)$
(c) $f(2+h)$

The function $f(x)$ says whatever is in the parentheses, square it and then add 4.
(a) $f(2)=2^{2}+4=4+4=8$
(b) $f(-3)=(-3)^{2}+4=9+4=13$
(c) $f(2+h)=(2+h)^{2}+4=\left(4+4 h+h^{2}\right)+4=h^{2}+4 h+8$

In a first semester course in Calculus, you are asked to simplify such expressions as $\frac{f(2+h)-f(2)}{h}$ that are called Newton quotients or difference quotients.

Example 2: Given $f(x)=x^{2}+4$, simplify $\frac{f(-3+h)-f(-3)}{h}$.

$$
\begin{gathered}
\frac{f(-3+h)-f(-3)}{h}=\frac{(-3+h)^{2}+4-\left((-3)^{2}+4\right)}{h}=\frac{9-6 h+h^{2}+4-(9+4)}{h} \\
=\frac{13-6 h+h^{2}-13}{h}=\frac{-6 h+h^{2}}{h}=\frac{h(-6+h)}{h}=-6+h .
\end{gathered}
$$

For these calculations, when f is a polynomial function, you should reach a point where the h in the denominator can be cancelled out.

The following example is a little more difficult.
Example 3: Given $f(x)=\frac{1}{x}$, simplify $\frac{f(4+h)-f(4)}{h}$.

In the first step, we are combining the fractions in the numerator:

$$
\frac{f(4+h)-f(4)}{h}=\frac{\frac{1}{4+h}-\frac{1}{4}}{h}=\frac{\frac{4-(4+h)}{4(4+h)}}{h}=\frac{\frac{-h}{4(4+h)}}{h}
$$

In the second step, we are using the fact that $\frac{\frac{a}{b}}{c}=\frac{a}{b c}$. That is, the denominators get multiplied.

$$
\frac{\frac{-h}{4(4+h)}}{h}=\frac{-h}{4 h(4+h)}=-\frac{1}{4(4+h)}
$$

Practice Exercises:

1. Given $f(x)=2 x-1$, find
(a) $f(4)$
(b) $f(4+h)$
(c) $\frac{f(4+h)-f(4)}{h}$
2. Given $f(x)=-x^{2}+2 x$, find
(a) $f(-5)$
(b) $f(3+h)$
(c) $\frac{f(3+h)-f(3)}{h}$

Answers:

1 (a) 7
(b) $7+2 h$
(c) 2
2a) -35
(b) $-h^{2}-4 h-3$
(c) $-h-4$

