WORKING WITH PROPORTIONS

In the proportion $\frac{a}{b}=\frac{c}{d}$, a and d are called the extremes of the proportion, and b and c are called the means of the proportion. (Note: These "means" are not the same as the "average")

If the proportion is written as $a: b=c: d$ we can see that a and d are at the extremes outside, whereas b and c are between the extremes.

The easiest way to determine whether a given proportion is true is by applying the cross-products test. In the proportion $a: b=c: d$, if $a d=b c$ then the proportion is true.

In fraction form, we can show the cross products as

MODEL PROBLEM 1

Determine whether $\frac{16}{8}=\frac{40}{20}$ is a true proportion.

SOLUTION

Using the cross-products test:

$$
\begin{gathered}
\frac{16}{8}=\frac{40}{20} \\
8 \times 4=320 \\
16 \times 20=320
\end{gathered}
$$

Because the product of the extremes is equal to the product of the means, the proportion is true.
Sometimes we are asked to find the value (of a mean or extreme) that will make a proportion true. The value that makes the cross products equal also makes the proportion true.

MODEL PROBLEM 2

Find the value of n that makes the following proportion true.

$$
\frac{15}{16}=\frac{n}{9}
$$

SOLUTION

We multiply to find the cross-products:

$$
\text { Product of extremes: } 15 \times 9=135 \quad \text { Products of means: } 16 \times n
$$

Since, in a true proportion, the product of the means is equal to the product of the extremes: $16 \times n=135$

Solving for n :

$$
\begin{aligned}
\frac{16 \times n}{16} & =\frac{135}{16} \\
n & =\frac{135}{16} \\
n & =8 \frac{7}{16}
\end{aligned}
$$

To check, we replace n in the original proportion with $8 \frac{7}{16}$ and cross-multiply.

$$
\begin{aligned}
& \frac{15}{16}=\frac{8 \frac{7}{16}}{9} \\
& 16 \times 8 \frac{7}{16}=135 \text { and } 15 \times 9=135
\end{aligned}
$$

PRACTICE:

Determine whether the ratios are proportional by using the cross-products test.

1. $\frac{0.5}{6}=\frac{4}{18}$
2. $\frac{16}{60}=\frac{4}{15}$
3. $\frac{\frac{2}{3}}{4}=\frac{3}{8}$

Find the missing value by using the cross-products test.
4. $\frac{7}{9}=\frac{1}{t}$
5. $\frac{3 \frac{1}{2}}{4}=\frac{m}{7}$
6. $\frac{5}{6}=\frac{2.3}{r}$
7. $\frac{m}{6}=\frac{8}{1.5}$

ANSWERS:

1. $N o(9 \neq 24)$
2. Yes
3. No $\left(12 \neq \frac{16}{3}\right)$
4. $t=\frac{9}{7}$
5. $m=6.125$
6. $r=2.76$
7. $t=32$
