Writing Numbers in Scientific Notation

To write a number in scientific notation

1. Move the decimal point right or left to obtain a number n such that $1 \leq n \leq 10$.
2. Count the number of places p that the decimal point has been moved.
3. Multiply n by 10^{p} if the decimal point was moved to the left. Multiply n by $10^{-\mathrm{p}}$ if the decimal point was moved to the right. Be sure to eliminate any meaningless zeros.

Example 1

Write in scientific notation:
a. $10,300,000$
b. 0.00089

Solution

a. We need to move the decimal point to the left 7 places to get a number n such that $1 \leq \mathrm{n} \leq 10$.

$$
10300000=1.0300000
$$

So we multiply n by 10^{7}. The zeros to the right of the 3 are meaningless, so we eliminate them, getting

$$
1.03 \times 10^{7}
$$

b. We need to move the decimal point to the right 4 places to obtain a number n such that $1 \leq \mathrm{n} \leq 10$. Then we multiply the result by 10^{-4} and eliminate the meaningless zeros on the left.

$$
\xrightarrow{0.00089}=00008.9 \times 10^{-4}=8.9 \times 10^{-4}
$$

To write a number in standard notation

1. Move the decimal point the number of places, p, in 10^{p}. Move it to the right if the exponent is positive; move it to the left if the exponent is negative. (Add zeros as necessary.)
2. Eliminate the multiplication sign and power of 10.

Example 2

Write in standard notation:
a. 1.206×10^{9}
b. 3.05×10^{-7}

Solution

a. Because the exponent is 9 , we move the decimal point 9 places to the right.

$$
1.206 \times 10^{9}=1.206000000=1,206,000,000
$$

b. Because the exponent is -7 , we must move the decimal point 7 places to the left.

$$
3.05 \times 10^{-7}=.000000305=0.000000305
$$

Example 3

a. $\left(4.8 \times 10^{15}\right) \times\left(6.4 \times 10^{12}\right)$
b. Divide the first of these numbers by the second.

Solution

a. To multiply two numbers in scientific notation, multiply the coefficients and then the powers of 10.

$$
\begin{aligned}
(4.8 & \left.\times 10^{15}\right)\left(6.4 \times 10^{12}\right) \\
= & (4.8)(6.4) \times 10^{(15+12)} \\
= & 30.72 \times 10^{27}
\end{aligned}
$$

This number is not in scientific notation because $30>10$. To write it correctly, we put the decimal part in the proper scientific notation and then simplify.

$$
\begin{aligned}
30.72 \times 10^{27} & =\left(3.072 \times 10^{1}\right) \times 10^{27} \\
& =3.072 \times 10^{28}
\end{aligned}
$$

b. To divide in scientific notation, we divide the coefficients and then subtract the powers of 10 .

$$
\begin{aligned}
& \frac{4.8 \times 10^{15}}{6.4 \times 10^{12}}=\frac{4.8}{6.4} \times 10^{(15-12)} \\
& =0.75 \times 10^{3} \\
& =\left(07.5 \times 10^{-1}\right) \times 10^{2}
\end{aligned}
$$

Practice:

Rewrite each number in scientific notation:

1. Number of pounds of advertising mail received by Americans in one year: $3,650,000,000$ pounds
2. A red blood cell count is typically about $5,000,000 / \mathrm{mm}^{3}$ blood. Express this count in scientific notation.
3. The average human brain is believed to have about 100 billion nerve cells. Express this in scientific notation.
4. $\frac{0.000072}{0.008}$
5. Time needed to compress a deuterium pellet by laser light: 0.000000001 second
6. Size of a DNA molecule: 0.00000217 millimeter

Rewrite each number in standard notation:
7. Energy given off by a hurricane: 5.0×10^{22} ergs
8. Number of gallons of water used by Americans daily: 4.5×10^{11} gallons
9. The pH value of a certain chemical is 1.0×10^{-2}.
10. Number of seconds in the month of January: 2.6784×10^{6} seconds
11. An x-ray has a wavelength of 1×10^{-10}

Compute and express your answers in scientific notation:
12. $\left(1.24 \times 10^{-13}\right) \div\left(6.2 \times 10^{20}\right)$
13. $\left(1.24 \times 10^{-23}\right) \times\left(0.08 \times 10^{2}\right)$
14. $(0.02) \times(0.000000078)$
15. $\left(5.6 \times 10^{18}\right) \div\left(2.8 \times 10^{15}\right)$
16. $\left(1.2 \times 10^{-13}\right) \times(24000000)$

Answers:

1. 3.65×10^{9}
2. 5×10^{6}
3. 1×10^{11}
4. 9×10^{-3}
5. 1×10^{-9}
6. 2.17×10^{-6}
7. $50,000,000,000,000,000,000,000$
8. 450,000,000,000
9. . 01
10. $2,678,400$
11. . 0000000001
12. 2×10^{-34}
13. 9.92×10^{-23}
14. 1.56×10^{-9}
15. 2×10^{3}
16. 2.88×10^{-6}
