Workshop Exercises: Differentiation and Integration Review

- 1. A force of 120 pounds is required to maintain a spring 6 feet beyond its natural length.
 - a) Find the work done in stretching the spring 2 feet beyond its natural length.
 - b) Find the work done in stretching the spring from 4 feet to 6 feet beyond its natural length.
- A tank whose sides are isosceles triangles (vertex down) with height 4 feet, base 6 feet, and length 10 feet is full of water that weighs 62.5 ^{Ib}/_{n³}. Find the work done in pumping the water
 - a) to the top of the tank.
 - b) to an outlet 1 feet above the top of the tank.
 - c) to an outlet 1 feet above the top of the tank if the tank is filled only half-way to the top.
- 3. Differentiate the following functions.

a)
$$f(x) = e^{2x}$$
.
b) $f(x) = \ln(2x)$.
c) $h(x) = 3^{1/x}$.
d) $f(x) = (\cos(x)) \cdot 2^{-4x}$.
e) $f(x) = \sin^{-1}(x^2)$.
f) $g(x) = (\tan^{-1}(2x))^3$.
g) $f(x) = \log_4 \sqrt{x^2 + 1}$.

4. Differentiate using logarithmic differentiation.

a)
$$y = (3 x + 2)^3 (4 x - 5)^5$$
.
b) $y = x^{\cos(x)}$.
c) $y = x^{\ln(x)}$.
d) $y = (\ln(x))^x$.

5. A bacterial population starts with 10,000 bacteria and grows at a rate proportional to its size.

After 2 hours there are 40,000 bacteria.

- a) Find the number of bacteria after 5 hours.
- b) When will the population reach 1 million?
- 6. (Carbon Dating) All living things contain carbon-12, which is stable, and carbon-14, which is radioactive. While a plant or animal is alive, the ratio of these two isotopes of carbon remains unchanged since the carbon-14 is constantly renewed; after death, no more carbon-14 is absorbed. The half-life of carbon-14 is 5,730 years. If changed logs of an old fort showed only 70% of the carbon-14 expected in living matter, when did the fort burn down? Assume the fort burned soon after it was built of freshly sawed logs.
- 7. Evaluate the integral for each of the following.

a)
$$\int \frac{(\ln x)^2}{x} dl x.$$

b)
$$\int \frac{\sin 2x}{1 + \cos^2 x} dl x.$$

c)
$$\int \frac{\cos x}{2 + \sin x} dl x.$$

d)
$$\int e^x dl x$$

e)
$$\int x^3 e^{x^4} dl x.$$

f)
$$\int_0^1 e^{-x} dl x.$$

2 | Calc II Differentiation and Integration Review EXERCISES & SOLUTIONS (2018).nb