Workshop Exercises: Polar Coordinates

- 1. The polar coordinates of a point are given.
 - (i) Plot each point.
 - (ii) Find two other pairs of polar coordinates for each point, one with r > 0 and one with r < 0.
- (iii) Find the Cartesian coordinates of the point.
- a) $\left(2, \frac{\pi}{3}\right)$. b) $\left(-1, \frac{2\pi}{3}\right)$. c) $\left(\sqrt{2}, -\frac{5\pi}{4}\right)$. d) $\left(-3, -\frac{\pi}{6}\right)$.
- 2. Find polar coordinates of the points with the given Cartesian coordinates.
- a) (4, 4). b) (-3, 0). c) $(\sqrt{3}, -1)$. d) (0, 2).
- 3. Sketch the curve with the given equation and then find the indicated area.
 - a) $r = 3 + 3\cos\theta$ (cardiod); find the area enclosed by the curve.
 - b) $r = 4\cos 3\theta$ (three-leaved rose); find the area enclosed by one loop.
 - c) $r^2 = 9 \sin 2\theta$ (lemniscate); find the area enclosed by one loop.
 - d) $r = 3 6 \sin \theta$ (limacon); find the area enclosed by its inner loop.
- 4. Find the area of the region that lies inside the lemniscate $r^2 = 8 \cos 2\theta$ and outside the circle r = 2.
- 5. Find the slope of the line tangent to the curve $r = 2 \sin \theta$ at $\theta = \frac{\pi}{6}$.