ALGEBRA PROBLEM SESSION \#13 SOLUTIONS

Equations that are Quadratic in Form

1. (a)

The graph of $y=f(x)+k$ for k, any real number is the graph of $y=f(x)$ vertically shifted k units. If $k>0$, then the graph of $f(x)$ is shifted up. If $k<0$, then the graph of $f(x)$ is shifted down.
(b)

The graph of $y=f(x+k)$ for k, any real number is the graph of $y=f(x)$ horizontally shifted k units. If $k>0$, then the graph of $f(x)$ is shifted left. If $k<0$, then the graph of $f(x)$ is shifted right.
2. a) $y=-|x|$
3. The graph of $f(x)=\sqrt{-x}$ is a reflection of the graph of $f(x)=\sqrt{x}$ about the y-axis.
4.

The domain of $f(x)$ is $(-\infty, \infty)$. The range of $f(x)$ is $(-\infty, 1]$.
5. $f(x)=\left\{\begin{array}{cl}2 x-1 & , \text { if } x<0 \\ 4 & , \text { if } 0 \leq x<2 \\ -x+1 & \text {,if } x>2\end{array}\right.$

ALGEBRA PROBLEM SESSION \#13 SOLUTIONS

6.

8. a) $f(-3)=-19, f(0)=3, f(4)=31$
b) $g(0)=5, g(-6)=1, g(-5)=0$
9. a)

Range of the function $=(-\infty, 0]$
b)

10. Let the difference quotient, $D Q=\frac{f(x+h)-f(x)}{h}, h \neq 0$ for the given functions.
a) $D Q=7$
b) $D Q=2 x-5+h$
c) $D Q=-6 x+2-3 h$
d) $D Q=-\frac{1}{2 x(h+x)}$

ALGEBRA PROBLEM SESSION \#13 SOLUTIONS

11.

c)
b)

12. (a)

(b)

ALGEBRA PROBLEM SESSION \#13 SOLUTIONS

13. (a)

(b)

(c)

14. (a) $S=\{-\sqrt{5},-2,2, \sqrt{5}\}$
(b) $S=\{4,16\}$
c) $S=\{-\sqrt{5}, 0, \sqrt{5}\}$
(d) $S=\{-5,-4\}$
(e) $S=\{-27,1\}$

Exponential Functions

1. (a) In the definition of the exponential function, if b is to equal 0 , then $f(x)=a 0^{x}=0$ a constant function not an exponential function.
(b) In the definition of the exponential function, if b is negative, then the function is not defined since for most values of x, b^{x} is not a real value or not defined.
2.

ALGEBRA PROBLEM SESSION \#13 SOLUTIONS

ALGEBRA PROBLEM SESSION \#13 SOLUTIONS

5. Domain $=(-\infty, \infty)$ and Range $=(3, \infty)$.
6. According to the linear model, $f(x)=0.15 x+1.44$, there were approximately 4.4 million words in the federal tax code in 1975. According to the exponential model, $g(x)=1.87 e^{0.0344 x}$, there were approximately 3.7 millions of words in the federal tax code in 1975. The exponential model is a better model in 1975.
7. An exponential function f with base b is of the form: $f(x)=b^{x}$ where b is a positive constant other than $1(b>0$ and $b \neq 1$) and x is any real number.
8. The natural exponential function is an exponential function of the form: $f(x)=e^{x}$, where $e \approx 2.718281827$ or $e=$ $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$
9. Does not make sense, because the number of reductions x cannot be any real number, eg. π.

Composite and Inverse Functions

1. The domain of f / g is the domain of f intersected with the domain of g, excluding any points where $g(x)=0$.
2. The composition of functions is associative.
3. $\mathrm{f} \circ(\mathrm{g}+\mathrm{h})=f \circ \mathrm{~g}+\mathrm{f} \circ \mathrm{h}$.
4.

(a) 17
(b) 4
(c) 4
(d) 18
(e) -36
(f) $2 x^{2}-1$
(g) $4 x-21$
5.
(a) $2 a^{2}-4 a+3$
(b) $2 h^{2}-4 h+3$
(c) $2(a+h)^{2}-4(a+h)+3$
(d) $2\left(a^{2}-2 a+h^{2}-2 h+3\right)$
6. $(f-g)(x)=x^{2}+1$ has domain of $(-\infty, \infty)$
$(f * g)(x)=\left(x^{2}-4\right)\left(2 x^{2}-3\right)=2 x^{4}-11 x^{2}+12$ has domain of $(-\infty, \infty)$
7. Typo
8. $2(2 x+h)=4 x+2 h$
9. (a) $f(g(x))=x$ and $g(f(x))=x$ thus $f(x)$ and $g(x)$ are inverses of each other.
(b) $f(g(x))=\frac{3(x+3)}{7}-7=\frac{3 x}{7}-\frac{40}{7} \neq x$ and $g(f(x))=\frac{1}{7}(3 x-4)=\frac{3 x}{7}-\frac{4}{7} \neq x$, thus $f(x)$ and $g(x)$ are not inverses of each other.
(c) $f(g(x))=x+10$ and $g(f(x))=x+10$, thus $f(x)$ and $g(x)$ are not inverses of each other.
10. (a) $f^{-1}(x)=x-5$ and $f^{-1}(f(x))=x$ and and $f\left(f^{-1}(x)\right)=x$
(b) $f^{-1}(x)=\sqrt[3]{x+1}$ and $f^{-1}(f(x))=x$ and and $f\left(f^{-1}(x)\right)=x$
(c) $f^{-1}(x)=\frac{x+3}{2-x}$ and $f^{-1}(f(x))=x$ and and $f\left(f^{-1}(x)\right)=x$
11. No, this graph does not represent a function that has an inverse function, since it does not pass the horizontal line test (HLT).

ALGEBRA PROBLEM SESSION \#13 SOLUTIONS

12.

13. Two functions are inverses of each other if $f^{-\mathbf{1}}(\boldsymbol{f}(\boldsymbol{x}))=\boldsymbol{x}$ and and $\boldsymbol{f}\left(\boldsymbol{f}^{-\mathbf{1}}(\boldsymbol{x})\right)=\boldsymbol{x}$.
14. To find the inverse of a one-to-one function follow this procedure:

1) Change $\boldsymbol{f}(\boldsymbol{x})$ to \boldsymbol{y}.
2) Interchange y 's for x 's.
3) Solve for y.
4) Replace $\boldsymbol{f}^{-1}(\boldsymbol{x})$ for \boldsymbol{y}.
5) Check that $f^{-\mathbf{1}}(f(x))=\boldsymbol{x}$ and and $\boldsymbol{f}\left(\boldsymbol{f}^{-\mathbf{1}}(\boldsymbol{x})\right)=\boldsymbol{x}$.
15. The graph of the inverse function of a one-to-one function can be obtained by reflecting each point of the one-to-one function over the graph of the identity function $f(x)=x$ or $y=x$.
