ALGEBRA PROBLEM SESSION #11 - PRACTICE PROBLEMS

Radical Equations

- 1. Is $\sqrt{x^2 4x + 4} = x 2$? What are the exceptions?
- 2. If both sides of an equation are raised to the same power, the resulting equation might not be equivalent to the original equation. Explain.
- 3. Explain why you must check each apparent solution of a radical equation.
- 4. Analyze the following solution and explain what, if anything, is wrong with it.

 $\sqrt{x-3} + 5 = x$ ($\sqrt{x-3} + 5$)² = x² x - 3 + 5 = x² x² - x - 2 = 0 (x - 2)(x + 1) = 0 x - 2 = 0 or x + 1 = 0 x = 2 or x = -1

- 5. Solve $\sqrt[3]{2x} = \sqrt{x}$. (Hint: Square and then cube both sides.)
- 6. Solve: a. $\sqrt{x+20} 2 = \sqrt{x+4}$ b. $3\sqrt{x} = \sqrt{3x+12}$
- 7. Solve:

a.
$$\sqrt{2x+5} + 11 = 6$$

b. $\sqrt{2x+1} = x - 7$
c. $\sqrt{6x+2} = \sqrt{5x+3}$
d. $\sqrt[3]{4x-3} - 5 = 0$
e. $2\sqrt{x-3} + 4 = x + 1$
f. $(2x+3)^{\frac{1}{4}} + 7 = 10$
g. $\sqrt{x+2} + \sqrt{3x+7} = 1$
h. $2(x-1)^{\frac{1}{3}} = (x^2 + 2x)^{\frac{1}{3}}$

Complex Numbers

- 1. When is the sum of two imaginary numbers (both not pure imaginary numbers) a pure imaginary number?
- 2. When will the quotient of two complex numbers be real?
- 3. Tell how to decide whether two complex numbers are equal.
- 4. Define the complex conjugate of a complex number and then find the complex conjugate of 7 2i.
- 5. Express each number in terms of *i* and simplify: a. $\sqrt{-21}$ b. $7 + \sqrt{-4}$

Perform the indicated operation and write results in the form a + bi.

Simplify: 15. i^{14}	16. i^{400}	17. $(-i)^6$
$12.\sqrt{-16}\cdot\sqrt{-4}$	13. $\frac{5i}{2-3i}$	14. $\frac{5-i}{3-2i}$
9. $8i(4i-3)$	10. $(7-2i)(-3+6i)$	11. $(5 - i\sqrt{3})(5 + i\sqrt{3})$
6. $(11+8i) - (2+$	5 <i>i</i>) 7. $(-7+5i) - (9-11i)$) 8. $15i - (12 - 11i)$

Selected problems were taken from Blitzer Algebra For College Students