ALGEBRA PROBLEM SESSION \#14 - PRACTICE PROBLEMS

Logarithmic Functions

1. Describe the appearance of the graph of $\mathrm{y}=f(\mathrm{x})=\log _{b} \mathrm{x}$ when $0<\mathrm{b}<1$ and when $\mathrm{b}>1$.
2. Graph $\mathrm{y}=f(\mathrm{x})=-\log _{3} \mathrm{x}$. How does the graph compare to the graph of $\mathrm{y}=f(\mathrm{x})=\log _{3} \mathrm{x}$?
3. Find a logarithmic function that passes through the points $(1,0)$ and $(5,1)$.
4. Find each value: (a) $\log _{3} 9$
(b) $\quad \log _{5} 0.04$
5. Find $x:$ (a) $\log _{2} x=5$
(b) $\log _{x} 32=5$
(c) $\quad \log _{x} 1=0$
6. Graph $y=f(x)=\log (x-2)$
7. Graph $y=x^{4}$ and $y=\log _{4} x$
8. Write in exponential form:
(a) $2=\log _{9} x$
(b) $\log _{5} 125=y$
(a) $5^{-3}=\frac{1}{125}$
(b) $15^{2}=x$
9. Write each equation in logarithmic form:
10. Evaluate:
(a) $\log _{3} 27$
(b) $\log _{3} \frac{1}{\sqrt{3}}$
(c) $\log _{11} 11$
(d) $\log _{4} 4^{6}$
11. Graph $f(x)=\left(\frac{1}{2}\right)^{x}$ and $g(x)=\log _{\frac{1}{2}} x$ in the same rectangular coordinate system.
12. Find the domain: (a) $f(x)=\log _{5}(x+6)$
(b) $f(x)=\log (7-x)$
13. What question can be asked to help evaluate $\log _{3} 81$?
14. Explain how to use the graph of $f(x)=2^{x}$ to obtain the graph of $g(x)=\log _{2} x$.

Distance and Midpoint Formulas

1. Find the perimeter and area of a figure that has vertices at $(0,5),(0,-5)$ and $(-5,0)$.
2. Find the distance between each pair of points: a. $(-4,-1)$ and $(2,-3)$
b. $(0,-\sqrt{2})$ and $(\sqrt{7}, 0)$
3. Find the midpoint of the line segment with the given endpoints:
a. $(10,4)$ and $(2,6)$
b. $(\sqrt{50},-6)$ and $(\sqrt{2}, 6)$
4. Write the standard form of the equation of the circle with the given center and radius: Center $(0,0), r=8$
5. Give the center and radius of the circle described by the equation and graph.
a. $x^{2}+y^{2}=49$
b. $(x-2)^{2}+(y-3)^{2}=16$
6. Complete the square and write in standard form. Give the center and radius of the circle and graph.

$$
x^{2}+y^{2}+8 x+4 y+16=0
$$

7. How is the standard form of a circle's equation obtained from its general form?
8. Does $(x-3)^{2}+(y-5)^{2}=-25$ represent the equation of a circle? What sort of set is the graph of this equation?
9. A triangle has vertices (corners) at $(13,6),(13,1)$, and $(1,1)$. Is it a right triangle?
