ALGEBRA PROBLEM SESSION # 6 - PRACTICE PROBLEMS

Introduction to Polynomials and Polynomial Functions

- 1. What is a polynomial function?
- 2. What do we mean when we describe the graph of a polynomial function as smooth and continuous?
- 3. Explain how to determine the leading coefficient of a polynomial.
- 4. Explain how to recognize like terms and then explain why the terms x^2y and xy^2 are not like terms.
- 5. Find the difference when $3x^2 + 4x 3$ is subtracted from the sum of $-2x^2 x + 7$ and $5x^2 + 3x 1$.
- 6. Find the sum when $2x^2 4x + 3$ minus $8x^2 + 5x 3$ is added to $-2x^2 + 7x 4$.
- 7. Find the sum when $7x^3 4x$ minus $x^2 + 2$ is added to 5 + 3x.
- 8. Explain how to find the degree of a polynomial by finding the degree of $9x^2y + 13x^2y^2 + 8x^4y^4$.
- 9. Analyze the claim the text makes that "the sum of two polynomials is a polynomial." Does $(x^2 2x) + (2x x^2)$ refute the claim?
- 10. Subtract $\left(-13m^3 8m^2 16m 11\right)$ from the sum of $\left(12m^2 + 4m + 7\right)$ and $\left(-13m^2 9m + 17\right)$
- 11. $(-12n^2 + 22n 21) (15n^2 2n 6) (20n^2 5n 8)$
- 12. $(-x^2-3x-4)-(-5x^2-x-2)-(-2x-5+3x^2)$
- 13. $(3x^2-2x-9+5x^2+2x-14)-(-2x^2-9)+(-4x-16)$
- 14. Write two polynomials that add to give $3x^3 2x^2 + x 7$
- 15. Write two polynomials whose difference is $2x^3 + 5x^2 + 6x 12$
- 16. Simplify: $4(2x^2 + 3x 9) 7(3x^2 3x 8)$

Multiplication of Polynomials

- 1. Find the product of 3r 2t and 4r t. 2. Simplify: $4(2x^2 + 3x 9) 7(3x^2 3x 8)$
- 3. Find the product of rs + t and rs 2t. 4. Find the product of $2x^2 + 5x$ and $-3x^2 4$.
- 5. Find the product of $y^2 + 2y$ and $y^2 3y$. 6. Simplify: (x + y + 4)(x + y 4)
- 7. Simplify: (7x + 5y 2)(7x + 5y + 2)
- 8. Compare $(a + b)^3$ and $a^3 + b^3$, and determine whether they are equal. If yes, explain why; if no, give a counter example.
- 9. How can the graph of function fg be obtained from the graphs of functions f and g?

Find the perimeter and area:

11.

14. Write a polynomial that represents the area of this figure.

15. If
$$f(x) = x + 3$$
 and $g(x) = x^2 - 3x + 9$ find $(fg)(x)$; $(fg)(-2)$ and $(fg)(0)$.

16. If
$$f(x) = x - 4$$
 and $g(x) = x + 10$ find $(fg)(x)$; $(fg)(-1)$; $(fg)(0)$.

Finding the Greatest Common Factor and Factoring by Grouping

- Explain how to find the greatest common factor of two natural numbers.
- Use 2 approaches to factor ac ad + bd bc. Are the results the same? Explain why or why not. 2.
- True or False: $28x^3 7x^2 + 36x 9$ is equivalent to $(28x^3 + 36x) + (-7x^2 9)$ when factoring by grouping. 3.

4. Factor completely:
$$-28xyz + 42x^2y^2 - 21y^2z^2$$
 $4uv - 6u^2v - 8v^2$ $48x^3y^3 + 72x^2y^2 - 64x^2y^3$

5. Factor by grouping:
$$24 + 3x^2 + 3x + 24x$$
 $r(r - 2) + (2 - r)$ $5x(2 - x) + 4(2 - x)$ $12y^2 - 20y + 40 - 24y$ $10x^2 - 15x + 12x - 18$

Factoring Trinomials

- 1. Explain what clues one should look for to assist in factoring:
 - (a) a polynomial of two terms
- (b)a polynomial of three terms
- 2. Factor: (a) $2x^2 - 4x - 30$
- $10x^2 9x 7$ (b)
- (c) $105 24x^2 18x$

- True or False: $8y^2 51y + 18$ has a factor of 8y 3.
- Is it possible to factor $x^6 7x^3 + 10$ without using substitution?
- 5. Factor: $6x^2 + 23x + 20$
- $10x^2 17x + 3 3y^2 19y 14$

- $5r^2 + 85r + 260$
- $2y^2 + 3y 15 \qquad 2x^2 19x 60$
- 6. Factor: $7rx^3 28rx^2 + 21r$

7. Factor: $9m^3 - 30m^2 + 21m$

8. Factor: $9n^3 + 27n^2 - 90r$