ALGEBRA PROBLEM SESSION \# 6 - PRACTICE PROBLEMS

Introduction to Polynomials and Polynomial Functions

1. What is a polynomial function?
2. What do we mean when we describe the graph of a polynomial function as smooth and continuous?
3. Explain how to determine the leading coefficient of a polynomial.
4. Explain how to recognize like terms and then explain why the terms $x^{2} y$ and $x y^{2}$ are not like terms.
5. Find the difference when $3 x^{2}+4 x-3$ is subtracted from the sum of $-2 x^{2}-x+7$ and $5 x^{2}+3 x-1$.
6. Find the sum when $2 x^{2}-4 x+3$ minus $8 x^{2}+5 x-3$ is added to $-2 x^{2}+7 x-4$.
7. Find the sum when $7 x^{3}-4 x$ minus $x^{2}+2$ is added to $5+3 x$.
8. Explain how to find the degree of a polynomial by finding the degree of $9 x^{2} y+13 x^{2} y^{2}+8 x^{4} y^{4}$.
9. Analyze the claim the text makes that "the sum of two polynomials is a polynomial." Does $\left(x^{2}-2 x\right)+\left(2 x-x^{2}\right)$ refute the claim?
10. Subtract $\left(-13 m^{3}-8 m^{2}-16 m-11\right)$ from the sum of $\left(12 m^{2}+4 m+7\right)$ and $\left(-13 m^{2}-9 m+17\right)$
11. $\left(-12 n^{2}+22 n-21\right)-\left(15 n^{2}-2 n-6\right)-\left(20 n^{2}-5 n-8\right)$
12. $\left(-x^{2}-3 x-4\right)-\left(-5 x^{2}-x-2\right)-\left(-2 x-5+3 x^{2}\right)$
13. $\left(3 x^{2}-2 x-9+5 x^{2}+2 x-14\right)-\left(-2 x^{2}-9\right)+(-4 x-16)$
14. Write two polynomials that add to give $3 x^{3}-2 x^{2}+x-7$
15. Write two polynomials whose difference is $2 x^{3}+5 x^{2}+6 x-12$
16. Simplify: $4\left(2 x^{2}+3 x-9\right)-7\left(3 x^{2}-3 x-8\right)$

Multiplication of Polynomials

1. Find the product of $3 \mathrm{r}-2 \mathrm{t}$ and $4 \mathrm{r}-\mathrm{t}$.
2. Find the product of $\mathrm{rs}+\mathrm{t}$ and $\mathrm{rs}-2 \mathrm{t}$.
3. Find the product of $y^{2}+2 y$ and $y^{2}-3 y$.
4. Simplify: $(7 x+5 y-2)(7 x+5 y+2)$
5. Compare $(a+b)^{3}$ and $a^{3}+b^{3}$, and determine whether they are equal. If yes, explain why; if no, give a counter example.
6. How can the graph of function $f g$ be obtained from the graphs of functions f and g ?

Find the perimeter and area:
10.

11.

$5 \mathrm{c}+2$
12.

14. Write a polynomial that represents the area of this figure.
$x-2$
$x-10$

15. If $f(x)=x+3$ and $g(x)=x^{2}-3 x+9$ find $(f g)(x) ;(f g)(-2)$ and $(f g)(0)$.
16. If $f(x)=x-4$ and $g(x)=x+10$ find $(f g)(x) ;(f g)(-1) ;(f g)(0)$.

Finding the Greatest Common Factor and Factoring by Grouping

1. Explain how to find the greatest common factor of two natural numbers.
2. Use 2 approaches to factor $\mathrm{ac}-\mathrm{ad}+\mathrm{bd}-\mathrm{bc}$. Are the results the same? Explain why or why not.
3. True or False: $28 x^{3}-7 x^{2}+36 x-9$ is equivalent to $\left(28 x^{3}+36 x\right)+\left(-7 x^{2}-9\right)$ when factoring by grouping.
4. Factor completely: $-28 x y z+42 x^{2} y^{2}-21 y^{2} z^{2} \quad 4 u v-6 u^{2} v-8 v^{2}$

$$
35 m n-5 m^{2} n^{2} \quad 48 x^{3} y^{3}+72 x^{2} y^{2}-64 x^{2} y^{3}
$$

5. $\begin{array}{lll}\text { Factor by grouping: } & 24+3 x^{2}+3 \mathrm{x}+24 \mathrm{x} & \mathrm{r}(\mathrm{r}-2)+(2-\mathrm{r}) \\ 12 \mathrm{y}^{2}-20 \mathrm{y}+40-24 \mathrm{y} & 10 \mathrm{x}^{2}-15 \mathrm{x}+12 \mathrm{x}-18\end{array} \quad 5 \mathrm{x}(2-\mathrm{x})+4(2-\mathrm{x})$ $12 y^{2}-20 y+40-24 y \quad 10 x^{2}-15 x+12 x-18$

Factoring Trinomials

1. Explain what clues one should look for to assist in factoring:
(a) a polynomial of two terms
(b)a polynomial of three terms
2. Factor: (a) $2 x^{2}-4 x-30$
(b) $10 x^{2}-9 x-7$
(c) $105-24 x^{2}-18 \mathrm{x}$
3. True or False: $8 y^{2}-51 y+18$ has a factor of $8 y-3$.
4. Is it possible to factor $\mathrm{x}^{6}-7 \mathrm{x}^{3}+10$ without using substitution?
5. Factor: $6 x^{2}+23 x+20$

$$
10 x^{2}-17 x+3 \quad 3 y^{2}-19 y-14
$$

$5 r^{2}+85 r+260$

$$
2 y^{2}+3 y-15
$$

$$
2 x^{2}-19 x-60
$$

6. Factor: $7 \mathrm{rx}^{3}-28 \mathrm{rx}^{2}+21 \mathrm{r}$
7. Factor: $9 m^{3}-30 m^{2}+21 m$
8. Factor: $9 n^{3}+27 n^{2}-90 r$
