ALGEBRA PROBLEM SESSION \#7 - PRACTICE PROBLEMS

Factoring Special Forms

1. Explain why a perfect square trinomial cannot have a negative last term.
2. If you have the choice of factoring a polynomial as the difference of two squares or as the difference of two cubes, which do you do first? Why?
3. Explain what is meant by the statement: 2 is a double solution of the equation $x^{2}-4 x+4=0$. Be specific and justify your answer.
4. Factor:
(a) $16 x^{2}-9$
(b) $81 y^{4}-256$
(c) $16 x^{2}-40 x y+25 y^{2}$
(d) $x^{2}-9 x y+81 y^{2}$
(e) $\mathrm{x}^{2}-12 \mathrm{x}+36-\mathrm{y}^{2}$
(f) $\mathrm{x}^{2}+16 \mathrm{x}+64-\mathrm{x}^{4}$
(g) $27 \mathrm{y}^{3}+1$
(h) $x^{3} y^{3}+64$
(i) $125 x^{6}-y^{6}$
5. A park is being built within a square lot but will not take up the entire lot. The entire lot is $6 x$ units by $6 x$ units. The park will be 4 units by 4 units. Find the area that is remaining in the square lot upon completion of the park.
6. Find the error in this proof that $2=1$:

$$
\begin{gathered}
\mathrm{x}=\mathrm{y} \\
\mathrm{x}^{2}=\mathrm{xy} \\
\mathrm{x}^{2}-\mathrm{y}^{2}=\mathrm{xy}-\mathrm{y}^{2} \\
(\mathrm{x}+\mathrm{y})(\mathrm{x}-\mathrm{y})=\mathrm{y}(\mathrm{x}-\mathrm{y}) \\
\frac{(x+y)(x-y)}{(x-y)}=\frac{y(x-y)}{x-y} \\
\mathrm{x}+\mathrm{y}=\mathrm{y} \\
\mathrm{y}+\mathrm{y}=\mathrm{y} \\
2 \mathrm{y}=\mathrm{y} \\
\frac{2 y}{y}=\frac{y}{y} \\
1=1
\end{gathered}
$$

General Factoring

1. Factor: (a) $3 x^{4}+27 x^{2}$
(b) $x^{3}+2 x^{6}-32$
(c) $5 \mathrm{y}^{3}-45 \mathrm{y}^{2}+70 \mathrm{y}$
(d) $6 y^{2}-66$
(e) $y+27 y^{4}$
(f) $x^{4}+x^{2}+1$. (Hint: Add and subtract x^{2}.)
2. True or False: (a) The trinomial $x^{2}-4 x-4$ is a prime polynomial.
(b) $\mathrm{x}^{2}+36=(\mathrm{x}+6)(\mathrm{x}+6)$
3. Find the area of the region given:

Applications of Polynomial Equations

1. Find a quadratic equation with the given roots.
(a)
3, 5
(b) $-2,6$
(c) $\frac{1}{2}, \frac{1}{3}$
2. Solve:
(a) $16 n^{2}=24 \mathrm{n}-8$
(b) $8 r^{2}+16 r=24$
(c) $9 y^{2}-18 y+9=0$
(d) $15-2 x=x^{2}$
(e) $2 x(x+3)=-5 x-15$
(f) $(x-1)(x+4)=14$
(g) $\mathrm{x}^{3}-2 \mathrm{x}^{2}-\mathrm{x}+2=0$
3. If $f(x)=5 x^{2}-11 x+6$ and $f(c)=4$, find all values of c.

Selected problems were taken from Blitzer Algebra For College Students
4. A rectangular park has length 3 yards greater than the width. The area of the park is 180 square yards. Find the length and width.
5. If the product of a number decreased by 6 and increased by 2 is 20 , find all possible solutions.
6. Each side of square is lengthened by 2 inches. The area of this new larger square is 36 square inches. Find the length of the side of the original square.

