Normal Distribution/Empirical Rule/Z-Scores Definitions and Concepts

1. Determine the median and mean of the following data sets and describe if the distribution would be approximately normal, skewed left, or skewed right.
a. $12,11,15,13,28,9,33$
b. $70,65,75,72,65,71,69$
c. $88,90,80,92,87,2,66$
2. Why is the Empirical Rule sometimes referred to as the "68-95-99.7 rule"?
3. In words, describe what a z-score represents.
4. If $\mathrm{z}=2.21$, is our x value on the left or right of a normal distribution? What if $\mathrm{z}=-6.68$?
5. If we obtain a z -score and look it up on a z table, does the number we get from the table represent the area under a normal curve to the left of our z-score, the probability of getting an x value to the left of our z -score, or are those two options identical?
6. Draw a normal curve with $\mu=50$ and $\mathrm{o}=8$, including the numbers at $\pm 1, \pm 2$, and ± 3 standard deviations from the mean and the percentages under the curve between standard deviations.
7. If $\mu=88, o^{\prime}=15$, and $\mathrm{z}=1.12$, what x value gave us that z -score? Start by stating the z -score formula.
8. If $\mathrm{z}=3.29$, without looking at a z table, do you think the area to the right of this z value with be very large or very small?
9. Without looking at a z-table, which of the following would be larger:
a. The percentage to the left of $\mathrm{z}=-1.02$ or to the right of $\mathrm{z}=2.01$?
b. The percentage to the right of $\mathrm{z}=-2.57$ or to the left of $\mathrm{z}=0.41$?
c. The percentage to the left of $\mathrm{z}=2.89$ or to the left of $\mathrm{z}=-3.07$?
