Hypothesis Tests/Confidence Intervals Word Problems

1. A government agency reports a confidence interval of $(26.2,30.1)$ when estimating the mean commute time (in minutes) for the population of workers in a city. Find the sample mean and the estimated margin of error.

$$
\begin{gathered}
\bar{x}=28.15 \\
\text { Margin of Error }=1.95
\end{gathered}
$$

2. From a random sample of 36 business days, the mean closing price of Apple stock was $\$ 116.16$. Assume the standard deviation is $\$ 10.27$. Construct a 90% and 95% confidence interval for the population mean. Interpret the results and compare the widths of the confidence intervals.

$$
\begin{aligned}
& 90 \% \rightarrow(113.34,118.98) \\
& 95 \% \rightarrow(112.81,119.51)
\end{aligned}
$$

3. $\mu<128$ is a claim as part of a hypothesis test. Would it have to be a null hypothesis or an alternative hypothesis? Why?

Alternative. The null hypothesis always uses the "=" sign.
4. An urban planner claims that the noontime mean traffic flow rate on a busy downtown college campus street is 35 cars per minute. Describe type I and type II errors for a hypothesis test of this claim.

Type I: Conclude the mean rate is not 35 cars/min when it is.
Type II: Conclude the mean rate is 35 cars/min when it is not.
5. A medical research team is investigating the mean cost of a 30-day supply of a heart medication. A pharmaceutical company thinks that the mean cost is less than $\$ 60$. You want to support this claim. How would you write the null and alternative hypothesis?

$$
\begin{aligned}
& H_{o}: \mu=60 \\
& H_{a}: \mu<60
\end{aligned}
$$

6. Find the P-value for the hypothesis test with a standardized test statistic z. Decide whether to reject the null hypothesis for the level of significance α.
a. Left-tailed test, $z=-1.32, \alpha=0.10$
b. Right-tailed test, $z=2.46, \alpha=0.01$
c. Two-tailed test, $z=-1.68, \alpha=0.05$
a) P-value: 0.09342 reject H_{0}
b) P-value: 0.0069 reject $\mathrm{H}_{\text {o }}$
c) P-value: 0.092957 fail to reject H_{0}
7. The two intervals $(114.4,115.6)$ and $(114.1,115.9)$ are confidence intervals computed using the same sample data.
a. What is the value of the sample mean? (Hint: Where is the confidence interval centered?)
b. The confidence level for one of the intervals is 90% and the other is 99%. Which is which, and how can you tell?
a) 115
b) The first interval is for 90%. A smaller confidence level yields a narrower interval width.
8. Consider the following statement for a 95% confidence interval (7.8, 9.4): There is a 95% chance that μ is between 7.8 and 9.4. Is this statement correct? Why or why not?

No. μ, the population mean, is a set value, it does not vary. The above statement implies μ is random and can charge.
9. For the following pairs, indicate which do not comply with the rules for setting up hypotheses, and explain why:
a. $\quad H_{o}: \mu=15, H_{a}: \mu=15$
b. $H_{o}: \mu=123, H_{a}: \mu<123$
c. $H_{o}: \mu=123, H_{a}: \mu=125$
a) Does not comply, H_{a} can not use "="
b) Complies
c) Does not comply. Both hypotheses needs to use the same number.
10. For each pair of P-value and significance level, state whether you would reject the null hypothesis:
a. \quad P-value $=.084, \alpha=.05$
b. $\quad \mathrm{P}$-value $=.003, \alpha=.001$
c. P-value $=.489, \alpha=.05$
d. P-value $=.084, \alpha=.10$
e. P-value $=.039, \alpha=.01$
f. P-value $=.218, \alpha=.10$
a) Fail to reject H_{0}
b) Fail to reject H_{0}
c) Fail to reject H_{0}
d) Reject H_{0}
e) Fail to reject H_{0}
f) Fail to reject H_{0}
11. The standard deviation for a population is 12.6. A sample of 36 observations selected from this population has a mean equal to 74.8 . Construct a $90 \%, 95 \%$, and a 99% confidence interval for μ.

$$
\begin{aligned}
90 \% & \rightarrow(71.35,78.54) \\
95 \% & \rightarrow(70.68,78.92) \\
99 \% & \rightarrow(69.39,80.21)
\end{aligned}
$$

12. According to the U.S. National Center for Health Statistics, the mean hospital stay for delivery of a baby was 2.4 days in 1993. A recently taken random sample of 150 births found a mean hospital stay of 2.2 days with a standard deviation of .9 days. Find the P-value for the hypothesis test with the alternative hypothesis that the current mean time in the hospital for childbirth is less than 2.4 days.

P-value: 0.003642

