
Misallocation in the Market for Inventors*

Fil Babalievsky

December 19, 2022

Click here for latest version

Abstract

How much misallocation is there in the market for inventors? This paper introduces a novel growth

model where firms search for inventors in a frictional labor market, and where the efficiency of innovation

depends on the quality of the match between the inventor and firm. The model features both knowledge

spillovers and congestion in the labor market, hence the resources invested in search can be either too low

or too high. I use the model to quantify this tradeoff and to study what policies can rectify the inefficiencies

in this market. I document that inventors are 40% more productive when moving across firms, a finding not

driven by differences in firm innovativeness. I find that search frictions and the resulting misallocation of

inventors across firms are of first-order importance for growth: shutting down search frictions and moving

to a world where inventors are perfectly allocated across firms increases growth from 2.0 to 2.6 percent.

Moreover, I find that firms invest too little in searching for inventors, and that conventional R&D subsidies

do not address the inefficiencies in the market for inventors. Finally, I show that partial-equilibrium effects

of R&D subsidies dramatically overstate their general equilibrium effects due to a novel channel in my

model: when firms innovate and creatively destroy their rivals’ product lines, they also break their matches

with inventors.
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Introduction

This paper studies the labor market for inventors. Which inventor works for which firm can affect

both firm performance and economic growth, as innovative activity combines inventor skills with

the intangible capital of their firm. Hence, it does not come as a surprise that many high-profile

inventors make headlines when they moved across firms (among them Peter Rawlinson from

Tesla to Lucid and Jeffrey Wilcox from Intel to Apple and back)1. In this paper I propose a novel

growth model that formalizes these stories and shows that the allocation of inventors has first-order

consequences for firm dynamics and growth.

I make three contributions. The first is theoretical: my model takes seriously the idea that firms

need to look for talented inventors before coming up with new products. In the model, firms hire

workers (“headhunters") to search for inventors to match with their existing product lines. They

then furnish the inventors with costly resources to innovate and help the firm expand into new

product lines, creatively destroying the incumbent product line. If an inventor was working on

a product line that was creatively destroyed, their match breaks. A key feature of the model is

that inventor-firm matches are differentiated and may be of high or low quality. As both matched

inventors and firms can search for replacements for their incumbent matches, both move up the

“match quality ladder" over time until their matches are destroyed. This model builds on both the

growth and search literatures, and it inherits some of the efficiency properties of both. As in all

models of growth, firms benefit from knowledge spillovers from their rivals, and therefore do not

internalize the benefit of making better matches and thereby innovating more quickly. However,

when firms decide how much effort to devote to searching for inventors, they do not internalize

the benefits to the inventors of being in a better match or the costs to rival firms of losing their

inventors. Search frictions can, as usual, mean that firms expend either too little or too much effort

to meet with workers. On the one hand, inventor mobility suggests greater returns to innovative

effort at their new firms than their old, and these returns are not internalized by the new firm as

it chooses how hard to search. On the other hand, the resources that their old firms invested2 to

recruit them in the first place went to waste—as usual in search models, the privately optimal level

1Details about Rawlinson and Wilcox’s stories can be found here and here, respectively.
2Gavazza, Mongey, and Violante (2018) provides a useful decomposition of recruiting costs, and finds that the two

that comprise the largest share of such costs are payments to job boards or search engine aggregators (for example,
purchasing a license to Monster’s database) and payments to agencies or third-party recruiters.
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of search effort may be greater or lower than the social optimum. These considerations are missing

in standard models of growth, where the inputs into innovation are instead undifferentiated and

hired in a frictionless market. Another novel feature of this model is that creative destruction

does not simply transfer control of a product line from one firm to another, but also destroys the

incumbent firm’s match with its inventor. As products become obsolete, the inventors who were

working on those product lines find that their skills are no longer valuable. This is a realistic

negative consequence of creative destruction that is missing from most growth models: as firms

innovate and render their rivals’ products obsolete, they also diminish the innovative capacity

of the economy by breaking their matches. This is the “Blackberry effect" —when Blackberry’s

smartphones were creatively destroyed by Apple’s iPhone, many of its engineers found themselves

unemployed.3

The key novel parameters in my model are those that govern the degree of search frictions and

the costs of inventor misallocation (or, more formally, the efficiency of the meeting technology and

the difference between the best and worst possible match qualities). My second contribution is

therefore to use disambiguated patent data from the USPTO to document novel facts about inventor

mobility across firms to discipline these parameters. In particular, I document that inventors move

frequently across firms, and that these moves are associated with large increases in patenting.

Taken together, these moments suggest a meaningful role for search frictions and misallocation.

More specifically, I document that inventors work at roughly 1.6 firms on average, which suggests

a significant amount of turnover given that the average time between an inventor’s first and last

patent is less than six years. The rate of mobility across firms helps discipline the degree of search

frictions in the market for inventors. To discipline the costs of misallocation, I use a matched-pairs

design related to that in Prato (2022). I compare inventors who move across firms at t = 0 to a

“twin" inventor who never moves but has the same first year in the patent data, had the same

cumulative number of patents at t = −1, was working same firm as of t = −1, and had the same

number of new patents at exactly t = −1. I find that the “treated" inventor who moves has about

40% more patents going forward. The fact that inventors see their productivity rise upon moving

suggests a role for inventor-firm match quality, and the fact that mobility is fairly frequent among

inventors suggests that inventors are not perfectly allocated across firms and lends credibility to a

3This news article describes some of their stories.

3

https://financialpost.com/news/economy/blackberry-ltd-waterloo-layoffs-jobs


model with search frictions. This is not driven by sorting to firms that have systematically more

patents per inventor, which also supports a role for inventor-firm specific match quality: if some

firms truly were systematically better at taking the same inventors and getting more innovations out

of them, one might expect that the increase in patenting upon a move would be mostly driven by

the firm effect. This matched-pairs comparison provides striking suggestive evidence that mobility

across firms is associated with more patenting, but it has no causal or structural interpretation

in and of itself. Both the treatment and placebo are selected conditional on continuing to patent,

which may introduce subtle selection effects. More importantly, I do not know if the treatment

moved straight from job-to-job or if they transited through unemployment. Consider an inventor

who climbed up the match quality ladder, lost their latest job, and then quickly matched to another

one. Such an inventor would show up as a “treated” inventor in this analysis, and would bias

down the estimates relative to the true average treatment effect of meeting and agreeing to move to

a new employer. But I run the same regressions in both my model and the data, and use them as

informative moments to discipline the underlying structural parameters.

My third contribution is quantitative: I show that my model has a rich set of implications for

growth, policy, and firm dynamics. First, I use the estimated model to quantify the impact of the

misallocation of inventors on growth. I find that removing this misallocation altogether could

raise growth from 2.0 percent to 2.6 percent, which shows that search frictions in the market for

inventors are costly for growth. Intuitively, the model finds such large costs because inventor

mobility is both very frequent and also associated with an increase in patenting. I then show that

introducing search frictions to a standard growth model in the vein of Klette and Kortum (2004) has

significant implications for firm dynamics, and can help rationalize why some firms grow extremely

quickly. Jones and Kim (2018) notes that workhorse random-growth models of firm dynamics do

not generate firms like Microsoft or Google that grow to enormous sizes in a short span of time, and

note that it is typically necessary to add some kind of heterogeneous growth rate across firms. They

cite the “Luttmer Rocket” of Luttmer (2011), a short-lived period when certain firms have better

ideas before reverting to the mean, as one way to match the speed at which superstar firms grow

large. Introducing search frictions to the Schumpeterian growth framework also helps address this

problem: in the calibrated model, most newborn firms never match to an inventor, and therefore

never spin off any new product lines. The few firms that do match innovate and expand into new

4



product lines very quickly, which gives them the opportunity to match with more inventors down

the line. Most firms in the calibrated model never get the chance to match with an inventor and

never get to innovate, and the firms that do match need to innovate very quickly to rationalize the

average rate of growth and creative destruction that we see in the data. Adding search frictions

for inventors therefore helps generate endogenously heterogeneous growth rates, especially for

newborn firms with relatively few product lines. The calibrated model can easily generate new

firms like Amazon or Microsoft that become innovation leaders within one generation, in stark

contrast to most firm-dynamics models. Notably, my model generates at least as much dispersion

in firm innovation as seen in the data without resorting to any ex-ante heterogeneity among firms

or inventors. The only dimension of heterogeneity is along inventor-firm match quality, and even

this is limited.4 There are no “superstars" or geniuses in my model—ex-post firm heterogeneity is

purely a matter of luck.

Finally, I use the model to conduct a series of counterfactuals. First, I ask whether firms are

investing too much or too little in search. To do so, I add distortions to the firms’ problem of

how much search effort to engage in and re-solve the model. I find that consumption-equivalent

welfare increases as search effort increases, meaning that firms underinvest in search. Two major

factors driving this result are the fact that my calibrated search costs are very low, and the fact

that there is decreasing returns to search at both the firm and aggregate level. Second, I test

whether conventional R&D subsidies can address these inefficiencies by themselves. Intuitively,

subsidizing research costs increases the net returns to hiring an inventor, and so one might hope

that conventional research subsidies can address the fact that firms invest too little in search for

inventors. In partial equilibrium this certainly holds to some extent, but in general equilibrium,

it does not. Recall that all innovation in the model is creative destruction, and that an inventor

working for a creatively-destroyed product line loses their job. Note that this mechanism is

in addition to the effect of creative destruction on the net present value of profits earned from

innovation, as detailed in Peters (2020). In that model as well as mine, a higher rate of creative

destruction weakens firms’ incentives to invest in innovation and reduces the intensity of innovative

effort. In my model, creative destruction also destroys some of the economy’s capacity to innovate.

Greater subsidies for research give firms stronger incentives to search for inventors and spur

4The highest-quality match is only about 25 percent more innately productive than the worst.
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innovation, but at the aggregate level an increase in innovation also means an increase in the rate

at which “match capital" is destroyed. Remarkably, I find that these two forces cancel each other

out almost perfectly in general equilibrium: as I raise the R&D subsidy to an unreasonably high

share of GDP, both the share of matched inventors and the average match quality are basically

unchanged. The partial equilibrium increase of a firm’s innovation in response to an R&D tax

credit, as one might estimate in a quasi-experiment, is partly driven by improved match quality,

but this mechanism does not scale up in general equilibrium. Modeling the process by which

firms match to inventors is therefore important for translating partial-equilibrium estimates into

general-equilibrium predictions about the impact of innovation policy.

Literature and Contribution

This paper builds on and contributes to several literatures. First, this paper introduces a model of

endogenous growth and firm dynamics in the tradition of Klette and Kortum (2004). A standard

feature of such models is that firms can hire inventors (and other inputs into idea creation) on a

frictionless spot market. My contribution is to instead model a frictional market for inventors and

show that such a market structure has markedly different and empirically relevant consequences

for policy and firm dynamics.

This paper also contributes to the literature on frictional search by applying it to inventors

and disciplining it with patent data. Other papers bridging the search and Schumpeterian growth

traditions are Engbom (2020) and Lentz and Mortensen (2012), but these papers model frictional

search for production workers as opposed to inventors.

A growing line of research uses patent data to study inventors. Prato (2022) and Arkolakis,

Peters, and Lee (2020) show that the migration of inventors across nations is a major factor in

driving growth, whereas my paper studies the smaller-scale but more frequent mobility of inventors

across firms. Akcigit, Caicedo, Miguelez, Stantcheva, and Sterzi (2018) studies the allocation of

inventors across research teams in a model where ideas are sold on a competitive market. van der

Wouden and Rigby (2020) studies inventor mobility from 1900 to 1975 and also finds that inventor

mobility is associated with an increase in patenting. I perform a similar empirical exercise and use

it to discipline a structural model and perform policy counterfactuals. Pearce (2019) also finds an
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important role for inventor-firm match quality in the rate of innovation.5

Finally, this paper contributes to the literature on innovation policy, in the vein of Atkeson and

Burstein (2019). Another related and complementary paper is Acemoglu, Akcigit, Alp, Bloom,

and Kerr (2018), which studies R&D policy in a model that has heterogeneous and dynamic firm

types but frictionless markets for homogeneous skilled labor. In both that paper and mine, the

key source of inefficiency is the presence of a knowledge spillover: holding all else equal, raising

productivity at other firms increases the returns to innovation at one’s own firm. In both my paper

and Acemoglu et al. (2018), growth depends on how the inputs into allocation (inventors or skilled

labor) are allocated across firms, and in both papers the equilibrium allocation is generally not

optimal. Celik (2022) considers a complementary growth model where not everyone can be an

inventor due to limited training, and finds that individuals are misallocated across occupations.

1 Model

Time is continuous. There is a stand-in household with a measure M of workers, who inelastically

supply their labor to profit-maximizing firms. An exogenous share ν of these individuals work

in the frictional market for inventors6, and the remaining share 1− ν can freely move across four

frictionless sectors: final goods production, new firm creation, “headhunting” for inventors, and

creating the “research good"7. Inventors become non-inventors at a rate δi, and non-inventors

become inventors at a rate δr = (νδi)/(1− ν).8

There is perfect risk-sharing in the household. The household derives logarithmic utility from

the final good Y and discounts the future at rate ρ. Consumption of the final good is the only source

of utility in this model and there are no aggregate shocks, hence we can write the household’s

discounted utility U as:

5Pearce (2019) also notes a separate major role for the match quality between a new inventor and the firm’s existing
team of inventors. Prato (2022) also studies the dynamics of teams of inventors. I do not focus on teams for the sake of
tractability but view merging these strands of the literature as an important direction for future research.

6I denote this share ν of individuals as “inventors” regardless of whether they are currently matched or not. The
assumption of an exogenous measure of inventors is a reasonable simplification in light of the findings in Bell, Chetty,
Jaravel, Petkova, and Van Reenen (2019) that the children of inventors are far more likely to be inventors themselves. See
Celik (2022) for a model that endogenously generates a fixed share of inventors.

7This is a stand-in for all non-labor inputs into innovation
8This is consistent with a steady-state share ν of inventors and helps to rationalize the fact that most inventors only

patent for a few years.
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U =

ˆ ∞

t=0
e−ρt log(Yt)dt.

1.1 Production

The production side of the model is deliberately standard. As in Klette and Kortum (2004), the final

good is a CES aggregate of an exogenous measure 1 of varieties. Each variety i may be produced

by multiple firms f , and each firm may produce more than one good. Different varieties i′ 6= i are

imperfect substitutes, with elasticity of substitution σ, but the same variety produced by different

firms f ′ 6= f are perfect substitutes. I find it convenient to denote [ f i] as the “division” within firm

f that produces good i. Production of the final consumption good Yt is as follows, where y[ f i]t is

the production of each division:

Yt =

ˆ 1

0

(
∑

f
y[ f i]t

) σ
σ−1

di

 σ−1
σ

.

Division [ f i] has access to a linear labor-only technology with productivity z[ f i]t:

y[ f i]t = z[ f i]tl[ f i]t.

I follow Garcia-Macia, Hsieh, and Klenow (2019) and assume that each division must pay an

infinitesimal operating cost of ε to produce. This ensures that only the division with the highest z

in each product line i will produce, and that it will charge a homogeneous markup µ = σ/(σ− 1).9

I denote zit = max f z[ f i]t as the efficiency of the leading producer of product line i, Ft(zit) as the

CDF of product lines with efficiency z at time t, Zt =
(´ 1

0 zσ−1
it dFt(zit)

) 1
σ−1

as the usual measure of

“average productivity” , and the “relative efficiency” of a division as ẑ ≡ (z/Z)σ−1.

I denote the total mass of workers involved in production as lt. Final goods output Y is Ztlt,

wages for production workers w are Yt/(µlt), and product-level gross profits π can be written as:

9If two “divisions” belonging to different firms f and f ′ can produce the same good i, and both decide to pay
the operating cost, they compete in Bertrand fashion. If z[ f ′ i]t < z[ f i]t, then division [ f ′i] will make no profits from
production. Because of the operating cost, the less-productive division will not enter, and the more-productive division
will charge a fixed markup.
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π[ f i]t = (µ− 1)
( z[ f i]t

Zt

)σ−1

︸ ︷︷ ︸
Relative Productivity ẑ

wtlt.

In what follows, I drop time subscripts where there is no possibility of confusion.

1.2 New Firm Creation

Aside from creative destruction from inventors at incumbent firms, which is the main focus of this

paper, growth can also come from creative destruction by entrants. There is free entry into new

firm creation: any of the M(1− ν) non-inventors can at any time decide to try to start up a new

firm, thereby converting their endowment of time into a flow rate of new firms.10 The rate φs at

which a worker can start up firms depends on the quality of the entry technology ι and the degree

of congestion ψ > 0 in entry: if a measure E of new firms are created, the productivity of the entry

technology scales down by Eψ, similar to Peters and Zilibotti (2021).

φs = ι/Eψ.

Upon successfully entering, the entrepreneur11 draws a random product line i and improves on

the relative productivity ẑ[ f i]t of the leading producer of i by an additive factor λ. The entrepreneur

creates a new firm f ′ with a single unmatched division to produce i. I assume that the “creatively

destroyed” division [ f i] exits and lays off their inventor.12 The representative household’s valuation

of the new startup is the net present value of its future profits.

Because innovations are cumulative, entrants do not internalize the impact of their efforts

on future innovators. This means that there is an externality and that the market allocation will

generally be inefficient.

I denote N(ẑ) as the value of an unmatched division with relative productivity ẑ, and dF(ẑ) as

the PDF of product lines across relative productivity space. I can now write CD, which is both the

10Making the cost of entry be in units of labor rather than in units of the final good is important for achieving balanced
growth.

11Note that entry is a separate technology from innovation in this model: entrepreneurs are drawn from the mass
M(1− ν) of non-inventors, not the mass Mν of inventors.

12This simplification greatly increases the tractability of the model and can be microfounded if I assume that the
frontier division, armed with the knowledge of how to produce i, can copy any innovation made by the laggard, reducing
their expected profits from innovation to zero.
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expected value of creatively destroying a product line and the expected value of entry conditional

on success:

CD =

ˆ
N(ẑ′ + λ)dF(ẑ′).

Because there are no frictions in or barriers between the labor market for final goods producers and

the entrepreneurial market, entry E must be such that the returns to entry exactly balance out the

opportunity cost of working in final goods production:

φsCD = w.

The mass of workers e in entry must also be consistent with the level of entry E:

φse = E.

1.3 Innovation

Firms can only innovate if they match a division to an inventor. For tractability, I assume that each

division within a firm can have at most one inventor.

I assume that inventors and research spending cannot be transferred across divisions within the

same firm, and that search effort is division-specific. Combined with the fact that each variety is

infinitesimal, this means that each division within a firm can make decisions without reference to

any other division and that firm values are additively separable in division values.13

All innovation in this model is creative destruction, which works the same for incumbents as

for entrants: when the inventor and division innovate, they draw a random product i′, improve on

its relative productivity by the same step size λ, and spin off a new unmatched division within the

same firm to produce the improved product line. The expected value of an innovation is the same

CD for an incumbent as it is for an entrant.

The rate of innovation is an increasing function of the resources r (in units of labor) which the

division provides to the inventor. Research effort r is a stand-in for all kinds of R&D expenditures

(lab technicians, equipment, etc). The rate of innovation is also increasing in the time-invariant

13Without this assumption, the firm’s state space would include its full list of product lines and inventors. Models in
the Klette and Kortum (2004) tradition typically impose assumptions on the cost function of firms such that their values
are additively separable. For firms such as Google or Amazon that make very diverse products, this is reasonable.
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division-inventor match quality q[ f i]j, which acts as TFP for the innovation process. This notion of

match quality is new to the literature.

I parameterize the rate of incumbent innovation φn very simply14:

φn(q, r) = q︸︷︷︸
Match Quality

· rγ︸︷︷︸
R&D

.

Note that ẑ does not show up in the value of innovation, hence the benefit of matching to an

inventor is constant across all values of ẑ.

1.4 Compensating Inventors and Investing in Research

To model the bargaining between the division and the worker, I assume the inventor and division

can successfully bring the idea to market with probability 1, or the inventor can exercise their

outside option and successfully bring the idea to market with probability χ < 1. This captures the

possibility that the inventor may try to leave the firm and steal the idea. If the division offers the

inventor a share χ + ε of the value of the patent, the inventor will always give the patent to the firm

and it will always be brought to market. I refer to χ as the “bargaining weight" of the inventor.15

Divisions therefore anticipate that inventors will keep some share of the value of innovation,

which induces a hold-up problem for the division. It must pay w for each unit of r to compensate

those workers for their opportunity cost. The division therefore chooses r to maximize the following:

max
r

(1− χ)qrγCD− wr

Note that divisions do not compensate inventors with a flat wage, but rather only reimburse

them upon a successful innovation occurring.16 They cannot pre-commit to a piece rate wi and will

14Standard models in the tradition of Klette and Kortum (2004), such as Peters (2020), also assume a firm-level
innovation production function that features constant returns to scale in both resources r and the number of product lines
controlled by the firm.

15This is isomorphic to imposing an exogenous piece rate of χ. I do not use a more-standard Nash bargaining setup
as it generally cannot be solved as a convex optimization problem in a model with on-the-job search—see Shimer (2006).
The key difference between this assumption and a typical Nash bargaining setup with bargaining parameter χ is that it
breaks the link between compensation and the expected duration of the match, which is the major source of difficulty in
using Nash with on-the-job search. My approach still avoids the need to carry around an extra state, and as I will show
later, it also helps avoid the need to solve for the inventors’ value functions altogether. Hence, it is more tractable than
Postel-Vinay and Robin (2002).

16Celik and Tian (2022) and Koh, Santaeulàlia-Llopis, and Zheng (2020) document that inventors face high-powered
incentives in the real world, which makes this assumption more defensible.
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therefore never pay inventors more than a share χ (as they would profitably deviate by cutting the

payment) or less than χ (as the inventor would not share the idea with them.)

The aggregate rate of innovation per product line is equal to the rate of creative destruction,

summed across entrant and incumbent innovation. I denote it as ∆:

∆ = φse +
ˆ

ẑ,q
φ(q)dFV(ẑ, q).

1.5 Matching to Inventors

I now explain how inventors are matched to divisions. To look for inventors, divisions hire

headhunters h from the mass of non-inventors, paying them a wage w to bid them away from

production, entry, and research. Effective search effort is m(h) = hη , and if η < 1 this implies

diminishing returns to search at the level of the division. Divisions can search regardless of whether

they are already matched or not; i.e. they have the option to fire their current inventor and replace

them.17 Search is random, and matched inventors are just as likely to be contacted as unmatched.

Unmatched inventors do not earn unemployment insurance.

There is a constant-returns-to-scale aggregate meeting function that converts search effort (the

number of unmatched divisions weighted by their search effort hη) to meetings H. This meeting

technology is a Cobb-Douglas function of aggregate search effort S and the total mass of matched

and unmatched inventors νM, with a search efficiency parameter α and an elasticity with respect

to search effort θ. I denote dFN(ẑ) as the mass of unmatched divisions with relative productivity ẑ,

and h as their search effort; and I denote dFV(ẑ, q) as the mass of matched divisions with relative

productivity ẑ and match quality q, and hq as their search effort. Note that, because innovation is

unrelated to ẑ, so are the returns to search.

I denote m∗ and m∗(q) as the optimal search effort of unmatched divisions and matched

divisions with match quality q, respectively. I am now ready to write out the aggregate meeting

rate H

17Assuming diminishing returns is analogous to introducing convex vacancy posting costs in a standard search
model. As Kaas and Kircher (2015) show, this is empirically relevant, and it simplifies the model computationally.
Also, without such an assumption, matched divisions would never search. With a linear search technology, unmatched
divisions would be exactly indifferent between searching and not searching, and because matched divisions can set r to
an arbitrarily small value they are strictly better off than if they were unmatched.
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H =

α

ˆ
ẑ

m∗dFN(ẑ) +
ˆ

ẑ,q
m∗(q)dFV(ẑ, q)︸ ︷︷ ︸

Search Effort S


θ

(νM)1−θ

I next introduce some helpful notation. First, it will be useful to write out the “contact rates”, or

the number of meetings per unit of search effort and the number of meetings per inventor, which I

respectively denote Cs and Ci:

Cs =
H
S

, Ci =
H

νM

Upon meeting, the division and inventor draw a match quality q from a uniform distribution

with support [ql , qh].18 They then decide whether to break any current match that they have and

match with each other. If both agree to the match, the match retains its quality q throughout its

duration.

Before writing out the firms’ problem of choosing its search effort, I introduce the notation Ω

for the expected value of meeting a new inventor. It is as follows for an unmatched division:

Ω =

(
1−
ˆ

ẑ′,q′

dFV(ẑ′, q′)
νM

)(ˆ
q
(V(ẑ, q)− N(ẑ)) dFq(q)

)
︸ ︷︷ ︸

Meeting Unmatched Inventor

+

ˆ
ẑ′,q′

ˆ
q>q′

(V(ẑ, q)− N(ẑ)) dFq(q)
dFV(ẑ′, q′)

νM︸ ︷︷ ︸
Meeting Matched Inventor

For a matched division with states ẑ, q̃, this instead becomes:

Ω(q) =

(
1−
ˆ

ẑ′ ,q′

dFV(ẑ′, q′)
νM

)(ˆ
q>q̃

(V(ẑ, q)−V(ẑ, q̃)) dFq(q)

)
︸ ︷︷ ︸

Meeting Unmatched Inventor

+

ˆ
ẑ′,q′

ˆ
q>max[q′,q̃]

(V(ẑ, q)−V(ẑ, q̃)) dFq(q)
dFV(ẑ′, q′)

νM︸ ︷︷ ︸
Meeting Matched Inventor

18This captures the distance between the inventor’s knowledge and the technical details of the product line they are
building on, similar to the “circle of knowledge" in Jones (2009)
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Divisions balance the costs of hiring labor for search against the benefits of making new matches.

In equilibrium, labor hired for headhunting must be paid the same market-clearing wage w as

workers used in final production, and the returns to search (the benefit of meetings Ω times

meetings per unit of search Hs) must equal their cost. For unmatched and matched divisions,

respectively, the problems of choosing effort are:

max
h

m(h)ΩCs − wh

max
h

m(h)Ω(q)Cs − wh

Matches break at an exogenous rate δm, which is a stand-in for all the idiosyncratic reasons why

a firm and worker might part ways.

1.6 Hamilton-Jacobi-Bellman Equations

In what follows I consider a transformed version of the economy on a balanced growth path: wages

w and average productivity Z grow at a constant rate g, the distribution of divisions across relative

productivities ẑ and match qualities q is constant, and policies are constant.

The value of an unmatched division has five parts: flow profit from its product, the possibility

of creative destruction, the capital gains from drifting down in “relative productivity”, the gains

from meeting inventors Ω, and the costs of generating those meetings.

ρN(ẑ) = max
h

π(ẑ)︸︷︷︸
Flow Profit

− ∆N(ẑ)︸ ︷︷ ︸
Creative Destruction

− g(σ− 1)
∂N(ẑ)

∂ẑ︸ ︷︷ ︸
Drift Down

+m(h)ΩCs − wh︸ ︷︷ ︸
Search

The value of a matched division has six parts: flow profits, the risk that the match breaks, the

possibility of creative destruction, drifting down, innovation, and the risk that their inventor will

meet another division.

ρV(ẑ, q) = max
r,h

π(ẑ)︸︷︷︸
Flow Profit

− (δm + δi)(N(ẑ)−V(ẑ, q))︸ ︷︷ ︸
Match Break

− ∆V(ẑ, q)︸ ︷︷ ︸
Creative Destruction

− g(σ− 1)
∂V(ẑ, q)

∂ẑ︸ ︷︷ ︸
Drift Down
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+m(h)Ω(q)Cs − wh︸ ︷︷ ︸
Search

+ (1− χ)qrγCD− wr︸ ︷︷ ︸
Innovation

+

ˆ
q′>q

Ci (N(ẑ)−V(ẑ, q))

´
ẑ hηdFN(ẑ) +

´
ẑ

´ q′
q hη

q̃ dFV(ẑ, q̃)

S
dFq(q′)︸ ︷︷ ︸

Inventor Finds New Division

1.7 Equilibrium

A balanced growth path consists of detrended values V, N, policies e, h, r,, wages w, distributions

F, FV , FN , and a growth rate g such that divisions maximize profits, workers maximize their utilities,

and policies are consistent with the distributions and growth rate being constant over time.

1.8 Discussion of Assumptions

The stark, simplifying assumptions that I have imposed on inventor compensation and matching

(no earnings when not matched, a fixed bargaining weight χ, and equal meeting rates for employed

and unemployed) make the model far more tractable. Crucially, they allow me to solve the model

without solving for the inventors’ value functions. To show this, I begin with the following helpful

proposition:

Proposition 1. Assume γ (the curvature of the innovation cost function) and χ (the inventor’s bargaining

weight) are both strictly between 0 and 1. Further, assume that inventors and divisions only observe their

own current and potential match quality q, and do not observe whether the other division or inventor is

already matched. If an inventor and division meet and draw potential match quality q, and if γ strictly less

than 1:

1. If both are unmatched, the meeting converts to a match.

2. If only one party is matched, the meeting converts to a match if and only if the new match quality q is

higher than the quality of the party’s current match.

3. If both are matched, the meeting converts to a match if and only if the new match quality q is greater

than the quality of both party’s current matches.
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Proof. First, recall that inventors have no outside option, and that the search technology is equally

good for matched or unmatched inventors and divisions. A matched division has the option to

set r = 0 and search as intensely as if it was unmatched, and it has the option to accept and reject

the same potential matches as if it was unmatched. Hence, being matched is at least weakly better

than being unmatched for a division. We can go further and show that this dominance must be

strict: if 0 < γ < 1, then as r → 0 the division’s profits from innovation (1− χ)qrγCD−wr become

positive. Hence, a matched division can do strictly better than an unmatched one by keeping the

same search-and-match policy but engaging in a small amount of research.

Because a matched division will always engage in a positive amount of research, it will always

pay out a positive amount in compensation to the inventor in expectation. A matched inventor

can do strictly better than an unmatched one by accepting and rejecting the same future offers

but taking the division’s compensation in the meantime. Therefore, both divisions and inventors

strictly prefer being matched to being unmatched.

Because both the argmax and maximum of (1− χ)qrγCD− wr are increasing in q, divisions

and inventors both strictly prefer high q to low q. Hence, they will leave a lower-q match if and

only if a higher-q match is available.

Recall that the only decision inventors need to make is whether to accept a match or not, and

the only source of welfare in this model is consumption (there are no taste shocks or moving costs.)

Hence, characterizing the acceptance sets of both the firms and workers using Proposition 1 allows

me to solve and estimate the model without solving for worker value functions.

2 Data

In order to discipline my model, I target a series of novel moments about inventor-firm dynamics.

My main source of data is PatentsView, the US Patent Office’s digitized repository of all US patent

applications since 1976. A major value-added of PatentsView relative to the raw patent data is

their effort to disambiguate the names of inventors and the individuals or organizations to whom

the patents are assigned: the raw data only includes alphanumeric names rather than a consistent
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identifier.19 I take PatentsView’s disambiguation as a given and note that my results will be affected

to some degree any time that two inventors are incorrectly misclassified as the same person or one

inventor is wrongly classified as two.

The key patent-level variables that I use are the inventor, the assignee (the firms and individuals

who were assigned ownership rights to the patent), and the filing date of the patent (I use filing

rather than grant dates as the former are presumably closer to when the patent was created.)

I subset the data to only include US-based inventors, and I only focus on patents with at least

one corporate assignee. I therefore do not need to be concerned with whether non-US patents or

“backyard” patents are comparable to US corporate patents. Excluding “backyard” innovation also

means that my dataset is more comparable to my model, which does not have such innovations. My

sample ultimately includes 3.3 million unique patents, 1.4 million unique inventors, and 200,000

unique assignees.

2.1 Key Moments

In this section I introduce some of the moments that I use to discipline my model. In particular,

these moments help me discipline the parameters that govern the dynamics of the market for

inventors: the efficiency of matching α, the share of the population that can be an inventor ν, the rate

of matches breaking δm, the rate at which inventors lose their creativity and become non-inventors

δi, and the gap between the best and worst matches qh/ql .

Inventors in my sample have, on average, 5.66 patents across 1.6 assignees, and their first and

last patents are separated by an average of 5.7 years.20 This is consistent with a move once every

3.5 inventor-years or so, indicating about as much mobility among inventors as among the general

population.21

As I do not have access to the actual dates of employment for each inventor, I cannot directly

measure job-to-job or employment-unemployment transitions. I must instead use the dates when

their patents were filed. In some cases I find that inventors patent for firm A, then firm B, then A

again in rapid succession. This suggests that an inventor’s final patents at their old firm may be
19Details of their disambiguation methods can be found here.
20If an inventor patents once in 2014 and once in 2019, I record their "career length" as 5 years. If a patent has multiple

corporate assignees, I only count one.
21US Bureau of Labor Statistics (2022) finds that Baby Boomers had 2.1 jobs from ages 45 to 54, and had many more

job changes at younger ages.
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Table 1: Key Moments

Description Value
Inventor career length (years) 5.7
Average patents per inventor 5.7
Average assignees per inventor 1.6
Average inventor-firm tenure (years) 1.8
Share of patents to new inventors 50
Share of patents to poached inventors 20

*Notes: “Inventor career length" is the average number of years between an inventor’s first and last patent. “Average
patents per inventor" is the average number of unique granted patents that each inventor has, with coauthored patents
treated the same as solo-authored patents. “Average assignees per inventor" is the number of unique corporate assignees
in the patents granted to the inventors. “Average inventor-firm tenure" is the average number of years between the
inventor’s first and last patents at a given assignee. “Share of patents to new inventors" refers to the share of patents at
time t awarded to inventors who did not patent in t− 1. “Share of patents to poached inventors" refers to the share of
patents at time t awarded to inventors who had patented for a different firm in the last year before t that I saw them in
the data. See Section 2.1 for details.

filed after their first patents at their new firm. Therefore, I code an employee as having moved in

year t if the plurality of their patents were assigned to a different firm than the last time when they

had non-zero patents.22

I compute two moments to help discipline the dynamics of the inventor labor market. First,

as a proxy for transitions into unemployment, I calculate the average number of years between

an inventor’s first and last patent with the same assignee.23 I find that this average time gap is

around 1.8 years. Second, as a proxy for job-to-job flows, I calculate the share of patents granted

to inventors whose assignee (employer) at year t is different from their employer in the last year

when they had a nonzero number of patents. I find that this share is about 20 percent. Analogously,

50 percent of patents in year t are awarded to inventors who had not patented in t− 1, including

inventors who had never patented at all. I summarize these moments in Table 1.

2.2 Matched Pairs

I follow Prato (2022) and discipline the effects of mobility on innovation using a matched-pairs

design, pairing inventors that move with similar inventors who do not move. My units of obser-

22If an employee has one patent at Microsoft in 2012, then one patent at Apple in 2014, I code them as having moved
in 2014. If an employee has one patent for Apple in 2012, then one for Apple and two for Google in 2014, I still code
them as having moved in 2014 even if their patent at Apple was filed later in 2014 than their two patents at Google.

23If an inventor only patents in a single year for that assignee, they count as a 0 towards this mean.
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vation are inventor-years where the inventor files for a patent.24 My treatment observations are

years in which an inventor moved and had a patent, and my placebo observations are years in

which inventors had a patent but did not move.25 I calculate “moves” in the same way as in the

last section: I code an inventor as having “moved” in year t if the plurality of the patents they filed

in that year were assigned to a different firm than in the last year when they had nonzero patents.

As in Prato (2022) I match treatment years to placebo years based on the cumulative number

of patents that both inventors had at t− 1, the inventors’ first year with a patent, the current year,

and the fact that both had non-zero patents in year t. The last condition is important as it means

that inventors patent in both the treatment and placebo years—that is, I am comparing treatment

years with at least 1 patent to placebo years with at least 1 patent. I am not comparing individuals

who move (and who, by definition, continue to patent) with individuals who stay but may stop

patenting. Aside from these matching conditions, my large sample size gives me the opportunity to

use stricter matching conditions than Prato (2022). I therefore choose my placebos from the list of

inventors that never change firms, and I also match treatment to placebo based on their most recent

employer before t and on the exact number of patents that both filed in the year t− 1. Naturally, I

also choose both treatment and placebo from the set of inventors who patent in more than one year.

Ultimately, I am left with a sample of over 75,000 inventor-years with a move matched to a placebo.

Note that, because my placebos are chosen from the set of inventors who stay at the same firm

and keep patenting after t− 1, the original firm must continue to patent after the treatment inventor

leaves. This should exclude many instances when a “move” across firms was in fact a merger or

acquisition.

All of my specifications report differences between the treatment T and placebo P, and all

parameters are year indicators. Note that I do not include t− 1 in these specifications, as I match

the treatment and placebo on their exact number of patents in that period.

YT
j −YP

j =
5

∑
τ∈[−5,−2]∪[0,5]

βτ1(j = τ) + ε (1)

I use four different outcomes for Y. In my first and primary specification, Yi
j is the number

24In Prato (2022), the units of observation are inventors. The differences is that I do not restrict my sample to the first
time that I observe an inventor move.

25I allow one inventor-year to act as a placebo for multiple treatments.
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of patents filed by i in relative year j. In my second specification, Yi
j is instead the number of

patents multiplied by their number of citations. In my third and fourth specifications, I ask whether

my results are driven by inventors moving to systematically more-productive firms, rather than

movement along a match quality “ladder” as in my model. To do so, I take the same treatment-

placebo pairs and replace their own patent counts (both raw and citation-weighted) with the

average number of patents per inventor at the firms that they worked at.26 I show the results of this

analysis in Table 2: mobility is associated with a large increase in the treated inventor’s own patents

and patents-times-citations, but is not associated with an increase for the firm-level analogues of

these variables. That is, inventors seem to become more productive when they move, but do not

necessarily go to firms that systematically patent more.

To help visualize and interpret the results more easily, I scale all coefficients and standard errors

by the mean of YT
j for j ∈ [−5,−1] and plot them in Figure 1. A coefficient of 0.4 means that the

difference in Y between the treatment and placebo at time j was 40 percent of the treatment’s mean

value of Y in the pre-treatment period.

Treated inventors patent more than placebos after they move, a pattern that is robust to scaling

up the raw count of patents by the number of forward citations that they receive. These patterns are

not driven by the inventors moving to firms that systematically have more patents per inventor—if

anything, the raw citation counts indicate that they move to firms that tend to have fewer patents

per inventor. This result changes if I scale the raw firm-level patents by their forward citations, but

those coefficients are essentially zeros.

I also find that my results are driven by an increase in patenting among treated inventors, rather

than a fall in patenting among the placebos. To show this, I calculate the ratio of patents in the

pre-treatment period to patents in the post-treatment period for the placebo and treatment and

demonstrate that both are well above 1:

Mean Patents of Treatment, t >= 0
Mean Patents of Treatment, t < 0

∼ 1.73

Mean Patents of Placebo, t >= 0
Mean Patents of Placebo, t < 0

∼ 1.18

26If an inventor patents at Apple in 2014 and Microsoft in 2016, I replace their patents with the average inventor-level
patent count at Apple in 2014 and Microsoft in 2016, but keep them at 0 in 2015.
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Table 2: Coefficients

Raw Patents Citations Firm Patents Firm Citations

(1) (2) (3) (4)

β−5 0.006 0.694 -0.081*** -1.503***
(0.005) (0.376) (0.002) (0.174)

β−4 -0.002 0.699* -0.068*** -0.876***
(0.005) (0.308) (0.002) (0.142)

β−3 -0.025*** 0.166 -0.051*** -0.578***
(0.004) (0.270) (0.002) (0.125)

β−2 -0.035*** 0.358 -0.026*** -0.400***
(0.003) (0.224) (0.001) (0.070)

β0 0.122*** 8.898*** -0.158*** 2.936***
(0.007) (0.456) (0.003) (0.270)

β1 0.243*** 7.236*** -0.273*** -0.007
(0.008) (0.344) (0.004) (0.232)

β2 0.268*** 7.002*** -0.255*** 0.233
(0.008) (0.386) (0.004) (0.220)

β3 0.282*** 6.728*** -0.243*** 0.580**
(0.008) (0.307) (0.004) (0.202)

β4 0.294*** 6.939*** -0.242*** 0.696***
(0.008) (0.376) (0.004) (0.201)

β5 0.303*** 6.044*** -0.242*** 0.635**
(0.009) (0.351) (0.004) (0.197)

Estimator OLS OLS OLS OLS

N 603,641 603,641 603,641 603,641
R2 0.014 0.005 0.053 0.001

* Notes: This table reports the results of Equation 1 for four different outcome variables Y: the inventors’ own raw
patent count, the inventors’ count of patents-times-citations, and the average of the same two variables at the level of
the firm. To calculate the firm-level variables, I replace the inventors’ own patents or patents-times-citations with the
average at the firm where they had most of their patents in that year. If they did not patent in a given year, I use the last
firm I saw them patenting at. β j is the coefficient on an indicator variable taking value 1 in year j, where j is defined
relative to the treatment year. N refers to the number of observation-years, hence each treatment-placebo pair can appear
up to 10 times (from j = −5 to j = −2, and then from j = 0 to j = 5). Because I match the treatment and placebo on
the exact number of patents in j = −1, I drop that year from this regression. I cluster standard errors at the level of the
treatment-placebo pair.

To summarize these results in a single number (which I replicate with simulated data and target

as a moment), I calculate the average change in the percentage difference in patents between the

treatment and placebo as follows:

Mean Patents of Treatment, t >= 0
Mean Patents of Placebo, t >= 0

− Mean Patents of Treatment, t < 0
Mean Patents of Placebo, t < 0

I find that this number is around 0.44—that is, the average treatment inventor has the same
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Figure 1: Difference in Outcomes, Treated vs Placebo
Notes: This figure illustrates the results of Equation 1 and Table 2. I again report the difference between the treatment

and placebo inventors along four outcome variables Y: own patents, own patents-by-citations, and their firm-level
counterparts. I scale the coefficients and standard errors by the mean value of Y for the treated inventors in the pre-
treatment period. Hence, a value of 0.5 can be read as “the difference in Y between the treatment and placebo was 50%
of the baseline value of Y for the treatment." See the notes for Table 2 for additional details.

number of patents as the average placebo inventor in the five years before the move, but has 44

percent more patents in the six years during and after the move.

3 Quantitative Exercise

I now explain how I map the model to data, with the goal of quantifying the losses caused by

search frictions in the market for inventors, asking how or whether policy can recover those losses,

and testing how well the model can replicate key firm dynamics facts.

3.1 Calibration

The model has fourteen parameters: the elasticity of substitution across varieties σ, the rate of

discounting ρ, the innovation curvature parameter γ, the inventor bargaining weight χ, the firm
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entry congestion curvature ψ, the elasticity of the meeting function θ, the lower and upper bounds

of the match quality distribution l and h, the share of the population ν that can be an inventor,

the exogenous match break rate δm, the efficiency of the search technology α, the step size λ, the

efficiency ι of the firm entry technology, and the measure of workers M.

3.1.1 Externally-Calibrated Parameters

I set the elasticity of substitution σ and discounting ρ to standard values of 0.05 and 4 as in (for

example) Peters (2020). I set γ = 0.5, a standard value on the response of innovation to research

effort—see Section II.C of Acemoglu et al. (2018). My model includes both the research good r,

which can be adjusted frictionlessly, and matches with inventors, which take time to adjust.Blundell,

Griffith, and Windmeijer (2002), a key source of the consensus value reported in Acemoglu et al.

(2018), uses a dataset with R&D expenditures over a relatively short timespan between 1972 and

1979. Hence, I interpret these estimates as capturing the short run response of r before matches

adjust, and use the standard value of γ = 0.5.27 I set the elasticity of the meeting technology θ to a

standard value of 0.5, as in Fujita and Moscarini (2017) or Gavazza et al. (2018). I follow Peters and

Zilibotti (2021) in imposing a small degree of congestion (ψ = 0.1) in the entry technology for firms.

As in that paper, this is purely for computational convenience.28 For the curvature of the match

cost technology η, I follow Kaas and Kircher (2015) and set it to 0.5.

3.1.2 Internally-Calibrated Parameters

I match the remaining nine parameters by replicating key moments in both the data and the model.

For a subset of moments, I calculate analogues using the steady state and do not simulate. For the

remainder of these moments, I simulate a panel of 30,000 inventors over 40 years and calculate the

same moments in the data as in the model. I estimate all parameters jointly but give a heuristic

explanation of which moments map to which parameters in this section.

I scale the level of three parameters (the highest and lowest match qualities (qh and ql) and

the entrant productivity ι) inside the solution algorithm to ensure that GDP growth is 2 percent,

and target the ratios of these three parameters with additional moments. I target qh/ql , the ratio
27I study the long run effects of R&D subsidies in general and partial equilibrium, after firms have had time to adjust

their search effort, in Section 4.3.
28This ensures that the amount of labor demanded for entry will never have a corner solution.
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of productivities of the most and least productive matches, so that the model can reproduce the

40 percent increase in patenting that I find with my matched-pairs design. I calculate the same

moment in the simulated data as in the real data: I code an inventor as having moved in year t if the

plurality of their patents in t were assigned to a different firm than in the last year when they had a

patent. I use the level of the new-firm creation parameter ι (or, more precisely, the ratio between ι

and ql) to target the share of employment in firms less than one year old, which was roughly 1.4

percent in 2018 according to Hong and Werner (2020). Because an entrant firm consists of a single

division and operates a single product line at first, I approximate this moment without simulation

by multiplying the mass of entrants by the average employment in a newly-created division.

I set λ to target an exit rate of “new" (less than 1 year old) firms of 14 percent, a value I take

from Peters and Walsh (2022).29

To calibrate ν, the exogenous share of workers who are capable of being an inventor, I target

the share of workers who patent in a given year. In the data, I divide the number of individuals

with a patent in each of the years from 1976 to 2022 by the size labor force in that year and take the

average of that value. On average, fourteen in every ten thousand workers have a patent each year.

I calibrate the match break rate δm to match the 1.8 years separating an inventor’s first and

last patent within the same firm.30 To discipline the rate δi at which inventors lose their creativity

and become non-inventors, I target the average length of time between an inventor’s first and last

patent.

I use α, the efficiency of the meeting technology, to target the 20 percent of patents in year t that

were awarded to inventors who move to a new firm in t.31 This is a rough proxy for the number of

new matches in the economy and is therefore informative about the rate at which meetings happen.

To discipline the bargaining weight χ, I use evidence collected in Koh et al. (2020) that labor

comprises roughly 60 percent of the cost of investment in intellectual property. The closest analogue

29Growth in this model is equal to λ∆/(σ− 1), and the exit rate of entrant firms (which start with a single product) is
approximately ∆. In order to reconcile 2 percent growth, an elasticity of substitution of 4, and a creative destruction
rate of 14 percent, λ must be 3/7. The fact that I am rescaling the values of the q grid and ι to hit the growth rate means
that the model will produce a creative destruction rate of almost exactly 14 percent if I fix λ to roughly 3/7. Note that,
because I solve the model on a discretized grid for ẑ, the “effective” value of λ will be slightly lower than 3/7, as steps
are bounded by the top of the grid, and so the creative destruction rate will be marginally higher than 14 percent. In
practice, the inaccuracies that this introduces are tiny.

30As with the same moment in the data, an inventor who only patents in a single year counts as 0 towards this mean.
31I use the same approach as in the matched-pairs design: I count an employee as having moved if the plurality of

their patents in year t were awarded to a different firm than the last year when they had a patent, and I do this in both in
the real and simulated data.
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to these labor costs in the model are inventor salaries, as I interpret r as labor used to produce

physical inputs for research. I therefore calculate the ratio of inventor pay to inventor pay plus the

cost of r and target a value of 0.6.

I have normalized the measure of product lines to 1, but I cannot similarly normalize the

measure of workers M. Because νM controls the number of inventors per product line, and because

q is rescaled to ensure GDP growth is 2 percent, M helps the model rationalize the number of

patents per inventor. That is, growth in this economy roughly depends on the number of inventors

per product line times the average number of innovative steps per inventor. M scales the first of

these two numbers so that the model can rationalize the second while still producing 2 percent

GDP growth.

3.1.3 Other Parameters

I add two additional “parameters” for the full quantitative implementation.

First, not every innovation is recorded as a patent, and my estimates will be biased if I map

innovations directly onto patents. Arundel and Kabla (1998) find that 35 percent of innovations are

recorded as patents in their sample of large European industrial firms, which I use as a benchmark.

I therefore set κ = 0.35 as the share of ideas that are patentable, and only record a random 35

percent of innovative steps as patents in my simulated data.

Second, I add an R&D subsidy, which I model as a fixed percentage subsidy sr for all expendi-

tures on r workers and compensation to inventors. The problem of a matched division choosing r

becomes:

max
r

(1− χ(1− sr))qrγCD− wr(1− sr)

The government finances these subsidies in the model with taxes on the labor income of non-

inventors. As non-inventors supply their labor inelastically, such taxes are non-distortionary, and I

do not need to loop over taxes to balance the budget.

I treat sr, the effective R&D subsidy, as a parameter to be estimated. Tyson and Linden (2012)

report that in 2008, the R&D tax credit cost 11 billion dollars, and direct government support for

corporate research cost another 26 billion. With US GDP at about 15 trillion that year — see US
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Table 3: Calibration

Description Value Target Data Model
ql Lowest match quality 1.4 GDP growth 2% 2%

qh Highest match quality 1.73 Patenting change after move 44% 36%
Average assignees per inventor 1.6 1.9

λ Step size 0.43 Entrant exit 14% 14%

ν Inventor share 0.002 Share of workers with a patent 0.14% 0.14%

δm Exog. match break 1.1 Average inventor-firm “tenure" (years) 1.85 1.78

δi Inventor exit 0.12 Inventor “career" lengths (years) 5.7 5.5
Average patents per inventor 5.7 5.6

α Search efficiency 9.4 Share of patents to “poached" inventors 0.2 0.22
Share of patents to “new" inventors 0.5 0.52

χ Inventor bargaining weight 0.54 Inventor pay/research costs 0.6 0.63

ι Firm creation efficiency 0.03 Employment share of startups 1.4% 1.4%

M Measure of workers 8.17 Average patents per year 1.0 1.0

sr Research subsidies 0.018 Subsidies/GDP 0.0025 0.0026

ρ Discounting 0.05 Standard, i.e. Peters (2020)
σ Elasticity of substitution 4 Standard, i.e. Peters (2020)
γ Innovation cost curvature 0.5 Standard, i.e. Acemoglu et al. (2018)
α Meeting elasticity 0.5 Standard, i.e. Fujita and Moscarini (2017)
η Search cost curvature 0.5 Kaas and Kircher (2015)
κ Patentable share of ideas 0.35 Arundel and Kabla (1998)
ψ Entry congestion 0.1 Set externally—see Peters and Zilibotti (2021)

*Notes: This table reports the parameters for the calibrated model and compares model-generated moments with the
data. All parameters affect all moments, but I list the parameters next to the moments which they most strongly affect. I
take growth from the BLS, the rate at which new firms exit from Peters and Walsh (2022), the labor share of research
costs from Koh et al. (2020), the entrant share of employment from Hong and Werner (2020), the share of GDP going to
R&D subsidies from Tyson and Linden (2012) and US Bureau of Economic Analysis (2022). I calculate the rest of the
internally-targeted moments from PatentsView.

Bureau of Economic Analysis (2022) — I target a 0.0025 GDP share of corporate research subsidies.

3.2 Results

In Table 3 I present the results of the estimation. The model performs well on all targets, even

though it has too few degrees of freedom to match all moments perfectly. Crucially, it does a good

job of matching the increase in patenting that a “treated" inventor experiences upon a move.
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Figure 2: Distribution of Matched Inventors Across Match Qualities
Notes: This figure plots the share of matched inventors in each level of match quality. I discretize the model with

10 points on the match quality grid. Inventors and firms draw a match quality q when they meet, but because both
inventors and firms look for better matches, they climb up the match quality ladder. Hence, almost a quarter of inventors
have the best possible match quality, while less than 5 percent have the worst.

In the model, 15.5 percent of GDP is paid out as investments in innovation (compensation to r or

to inventors). Atkeson and Burstein (2019) report a wide range of reasonable estimates for the right

GDP share of such investments, from the 3 percent of value added in research and development on

the low end to the estimated 13 percent of non-farm output in the broader measure of Corrado,

Hulten, and Sichel (2009), with their preferred value of 6 percent of value added splitting the

difference. The model’s inferred value of investments in innovation is towards the upper range of

plausible estimates, but is not unreasonable. As there is significant uncertainty about the true share

of output that acts as an investment in innovation, I leave this as an untargeted moment. I report

other properties of the equilibrium in Appendix C.
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3.2.1 The Allocation of Inventors

64 percent of potential inventors are matched in equilibrium. This surprisingly low number is an

artefact of my choice not to let them take other jobs when not working as an inventor.32 Recall that

the minimum value of q is around 1.5 and the maximum is around 1.7. The average match quality

conditional on being matched is 1.6, indicating that inventors are well-matched in general. In Figure

2, I display the distribution of matched inventors across the match quality distribution. When an

inventor and firm meet, they draw their match quality from a uniform distribution. Because there

is both on-the-job and replacement search, inventors and firms climb the “match quality ladder"

and replace worse matches with better ones. In Figure 3, I show how the rate of innovation φ varies

with match quality q. Because firms supply inventors with the research good r, and because the

optimal value of r increases with match quality q, the rate of innovation φ grows faster than q. Still,

the best possible match only innovates about 55 percent more than the worst.

3.3 Implications for Firm Dynamics

This model offers new insights on the determinants of firm growth and innovation: most product

lines never match with an inventor before being creatively destroyed, which means that the

remaining product lines need to innovate rapidly to make up the difference. Most newborn firms

never match more than a handful of their products to inventors, but the small handful that do

then spin off many product lines that give them more chances to match with inventors down the

line. Some newborn firms therefore die without having innovated at all, whereas a small handful

expand rapidly.

To show how introducing search frictions can lead to dramatic dispersion in innovation across

firms, I simulate a 30-year panel of newborn firms, born at random dates within that time window,

and tally up all the patents that these firms receive by the end of that window. To speed up the

simulation, I do not allow firms to innovate after they receive 120,000 patents33, which is the

maximum in the real data. In Figure 4, I compare the distribution of patents across entrant firms

generated by the baseline model to the distribution generated by a “no-search" model where the

32Without this assumption, it is possible that certain values of q would be unacceptably low for an unmatched
inventor. This would make it challenging to separately identify α and the lowest value that q could take.

33Many firms actually hit the cap of 120,000 lifetime patents, which explains why the distribution appears to have a
second mode at the far right end of the graph.
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Figure 3: Match Quality and the Rate of Innovation
Notes: This figure plots the match quality q and rate of innovation φ for different match qualities. I rank match

qualities from 1 to 10 on the horizontal axis, and plot their corresponding q and φ on the vertical axis after rescaling by
the lowest value of both of those quantities. The rate of innovation scales up with both q and the quantity of the research
good r that firms provide inventors, which itself is increasing in q. Hence, φ grows faster than q.

intensity of innovation across product lines is the same, and to the distribution of patents awarded

to firms that first patented in 1990 or later in the real data. In stark contrast to the “no-search"

model, and indeed to the bulk of the Schumpeterian growth literature, the model with search

frictions generates more dispersion in patenting than we see in the data for these young firms:

Recall that this model has no firm- or inventor- level permanent heterogeneity, only an idiosyn-

cratic match quality term. It does not need such features, or other modeling devices such as the

“Luttmer Rocket”, to rationalize why some firms go from small startups to innovation powerhouses

in a very short span of time. Note also that this is an untargeted moment—the model can generate

at least as much dispersion in firm-level innovation as we see in the data without explicitly targeting

it. Introducing search frictions for inventors to the Schumpeterian growth framework therefore

helps make sense of some puzzling, hard-to-match firm dynamics facts without needing to “bake

in” unexplained heterogeneity.
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Figure 4: Distribution of Patents for “New" Firms
Notes: In this figure I plot the distribution of patent counts for entrant firms less than 30 years old in both model-

generated and real data. I take the “Baseline Model" distribution from a simulation from the original calibrated model
with a cap of 120,000 patents (the maximum in the data). I take the “No-Search Model" distribution from a simulation of
a model where firms do not need to match with inventors before innovating. I take the “Data" distribution from the
actual patent counts of firms that started patenting in 1990 or later. To ensure compatibility with the data, I draw the
simulated firms’ birth years from a uniform distribution with support [0, 30]. Both simulations include 10,000 entrant
firms, although not all firms successfully patent before their death. I bin firms into five groups based on their cumulative
number of patents, and report the share of firms in each group on the vertical axis.

To help build more intuition for this result, and to understand what parameters are most

relevant, note that in the standard framework of Klette and Kortum (2004) new divisions creatively

destroy just under one rival division on average before being creatively destroyed themselves.34

In the absence of any sort of firm heterogeneity, the exact number of “child” divisions follows a

Poisson distribution, with a mean and variance of slightly less than 1. In my model, divisions need

to match to an inventor before they innovate, and the odds of innovating before being creatively

destroyed are quite low at just under 11 percent. Conditional on innovating at all, the number of

innovations per division has a mean and variance of just over 7. Hence, introducing search frictions

for inventors is a way of adding heterogeneity in growth rates, which especially drives dispersion

34Without entrant firms, which are a relatively small source of growth, new divisions would need to creatively destroy
exactly one rival on average to keep the mass of product lines fixed at 1.
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for young firms with only a handful of inventors. A newborn firm with a single division that finds

a good match quickly and survives for a long time can grow extremely rapidly. A fortunate match

for such a firm therefore behaves similarly to an endogenous Luttmer Rocket.

The most important combination of parameters driving these results is Mν, the number of

workers per product line times the share of workers who can be inventors. At the current calibration,

this number is extremely low at 0.02.35 Very few divisions get to innovate, and those that do then

innovate rapidly.

The fact that my model overshoots the number of “Amazons" in the data is arguably more

innocuous than it looks: my model does not feature any notion of span-of-control or decreasing

returns at the firm level for the sake of tractability. Standard models in the Klette and Kortum

(2004) tradition also lack such features, and even so, they struggle to generate fast-enough firm

growth. Also, roughly 60 percent of firms in my sample have exactly one patent, and these firms

only account for around 7 percent of all patents. Hence, the large discrepancy in the share of firms

with 1-5 patents in the model compared to the data is less concerning than it appears.

4 Counterfactuals

In the next sections I study the costs of the misallocation of inventors, and ask whether policy can

recover some of these costs.

4.1 The Cost of Search Frictions

In order to establish a benchmark or upper bound for the cost of the misallocation of inventors, I

begin by increasing the efficiency of the search technology α until the average match quality q of a

matched inventor gets close to the highest possible value and until almost all inventors are matched.

This should not be interpreted as a policy counterfactual but as an upper bound for what policy

can possibly do. I find that growth increases from 2.0 to 2.6 percent as search frictions disappear,

an enormous gain with significant consequences for welfare. In Figure 5, I plot the growth rate,

share of matched inventors, average match quality conditional on being matched, share of labor

35Note that inventors cycle in and out of the economy at a high rate, and matches tend to break very quickly. This
helps explain why 11 percent of divisions get to innovate before being destroyed even though only 2 percent can be
matched at any one time.
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Figure 5: The Impact of Improving Match Efficiency
Notes: This figure plots the growth rate, share of matched inventors, average match quality conditional on being

matched, share of labor allocated to producing the research good r, and consumption equivalent welfare as α, the
efficiency of the meeting technology, increases. To plot variables on the same scale and to make interpretation easier, I
normalize all quantities so that they are equal to 1.0 at the baseline calibration. Hence, a value of 1.01 corresponds to a 1
percent increase. The horizontal axis is the efficiency of the meeting technology, also normalized so that the baseline is
equal to 1. The dashed horizontal lines indicate the upper bound of match quality and the matched share, and they have
the same colors as the variables they map onto.

allocated to producing the research good r, and consumption equivalent welfare (all normalized to

1 in the baseline economy) as α increases and search frictions disappear. The dashed horizontal

lines indicate the upper bounds of match quality and the matched share of inventors.

The share of labor allocated to producing the research good r does not scale up as quickly as

the share of inventors who are matched. This is because a greater rate of innovation also means a

greater rate of creative destruction, which lowers the returns to innovative effort and lowers the

research intensity for a given inventor-firm pair.

Even though reducing search frictions in the market for inventors would significantly enhance

growth, it does not follow that the economy under-invests in inventor search h at the current value

of α, or that there is a useful role for policy. The economy faces a simple dynamic tradeoff: On the
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one hand, a unit of labor that is allocated to the meeting technology increases the rate at which

firms match with inventors, which will increase the average match quality q and therefore the

growth rate of technology and consumption. Because of the quality-ladder structure of innovation,

firms do not fully internalize the benefits of making a good match and innovating more quickly:

some of the benefit goes to the rival firms that will creatively destroy their product lines. On the

other hand, the labor used in the meeting technology cannot be allocated to producing the final

good, so there is less consumption holding fixed the level of technology. Because there is congestion

in the market for inventors, the resources expended in search may even be too high. In order to

understand whether knowledge or congestion spillovers dominate, I introduce a “wedge" τ into

the firm’s decision problem for search effort and re-solve for the new distorted equilibrium. A

positive wedge τ > 0 induces firms to spend more than is privately optimal, and a negative wedge

τ < 0 induces them to spend less. Note that these wedges leave the efficiency of search unchanged.

The firms now maximize the following distorted problem:

max
h

m(h)ΩHs − wh(1− τ).

In Figure 6, I plot the rate of growth, consumption-equivalent change in welfare, share of

matched inventors, and match quality conditional on being matched as I increase and decrease

the share of labor allocated to search for inventors. I find that increasing search effort would

be welfare-improving, because the positive knowledge spillovers from more innovation through

better-matched inventors dominate the negative spillovers from congestion.36 I find that welfare is

monotone-increasing for values of τ quite close to 1. This is in part because my calibrated search

costs are extremely low and the share of the workforce allocated to search is tiny, so even increasing

the number of workers devoted to search many times over only reallocates a small share of the

overall workforce.

36As an aside, I find that actually implementing these wedges as subsidies, even for values of τ close to 1.0, costs the
government far less than traditional R&D subsidies for a given increase in growth. This connects my paper to a long
tradition in the search literature of considering whether there is “too much" or “too little" vacancy posting, dating back
to the seminal contribution of Hosios (1990). I leave it to future work to figure out whether or how such subsidies could
be implemented.
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Figure 6: The Impact of Changing Search Effort
Notes: This figure plots the growth rate, share of matched inventors, average match quality conditional on being

matched, share of labor allocated to producing the research good r, and consumption equivalent welfare under different
values of the distortion τ. Firms decide on their search effort “as if" the price of search was (1− τ)w rather than w,
meaning that positive values of τ cause firms to increase their search effort. The efficiency of search α is the same—this
exercise asks whether, at the current level of search efficiency, firms invest too much or too little in search. To plot
variables on the same scale and to make interpretation easier, I normalize all quantities so that they are equal to 1.0 at the
baseline calibration.

4.2 Can Policy Recover These Losses?

This model has two margins of investment: firms can invest in their “match capital” by increasing h,

and they can invest in their “idea capital” by increasing r. I summarize the various subsidies to the

latter form of investment as sr, a stand-in for the R&D tax credits and other research subsidies. One

might hope that R&D subsidies could bring the economy fairly close to the optimum by themselves:

subsidizing r and inventors’ salaries increases the returns to search effort, and can in principle

indirectly raise the average match quality to the point where there would be minimal gains from

any further improvements.

In practice, I find that the indirect effects of R&D on the allocative efficiency of inventors are

largely canceled out by their indirect effect on creative destruction. This intuition points to a novel
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Figure 7: The Impact of R&D Subsidies sr on Match Quality and the Share of Matched Inventors
Notes: This figure plots the share of inventors who are matched and their average match quality conditional on

being matched as R&D subsidies increase. To plot both variables on the same scale and to make interpretation easier, I
normalize both quantities so that they are equal to 1.0 at the baseline calibration. Hence, a value of 1.01 corresponds to a
1 percent increase. The horizontal axis is the R&D subsidy as a share of GDP, so a value of 0.3 means that 30 percent of
GDP is allocated to R&D subsidies.

reason why the benefits of R&D subsidies may not scale up: the additional creative destruction

coming from more innovation by rival firms destroys “match capital” and lowers the innovative

potential of the economy. In contrast to standard Schumpeterian growth models, such capital is

costly to build up and is lost to the economy when a division becomes obsolete.

In Figure 7, I plot the share of matched inventors and the average match quality of inventors

conditional on being matched at all for R&D subsidies going all the way to 30 percent of GDP.

Growth increases due to the large increase in r but match quality and the share of matched inventors

stay basically flat. The share of matched inventors peaks no more than 3 percent higher than the

baseline, whereas the average match quality conditional on a match only rises by a fraction of

a percent. The positive incentive effects win out for any reasonable level of R&D subsidies, but

the effects are small. Hence, R&D subsidies do not recover the losses from search frictions in the

market for inventors and leave growth on the table.
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4.3 Partial and General Equilibrium Effects of R&D subsidies

Finally, I use the model to shed light on the differences between the general and partial equilibrium

effects of R&D subsidies. As in all Schumpeterian growth models, an increase in aggregate

innovation increases the rate of creative destruction ∆, which lowers the returns to innovation.

Because this force is only present in general equilibrium, it will not be detected in case studies

or quasi-experiments affecting a small share of firms,. In my model, creative destruction also

destroys match capital (the "Blackberry effect"), meaning that it not only worsens the returns to

innovation but actually destroys some of the economy’s innovative capacity. This side-effect of

creative destruction is new to the literature.

I conduct two experiments to show how the general and partial equilibrium effects of R&D

subsidies differ. First, I remove R&D subsidies altogether by setting τr = 0 and re-solving for

the new balanced growth path. This captures the long run general equilibrium effects of R&D

subsidies as a whole. Second, I remove R&D subsidies for a small number of entrant firms and all

their future innovations but leave the growth rate and distribution of product lines across z and q

fixed.37 For the sake of simplicity, I assume that workers observe q but not whether the firm has

access to subsidies, which keeps workers’ policies the same: they move if and only if they meet

a division that can offer them a strictly higher q.38 I then re-solve for the values (V and N) and

policies (h and r) of these product lines. I then find the long-run distribution of affected product

lines across match qualities. As this is more involved, I leave that discussion to Appendix A.7.

In Table 4, I report the share of matched product lines, average match quality conditional

on being matched, average product line-level search effort, average research good expenditures,

average research good expenditures per matched product line, and average innovation rates φ for

both experiments. I report all values relative to their average in the baseline economy. In general

equilibrium, the impact of taking away R&D subsidies is small.39 In partial equilibrium, however,

taking away these subsidies lowers search effort and investment in the research good, lowering

37Both of these are long-term exercises and give firms enough time to adjust their search effort and settle into a new
stationary distribution across match qualities q. Note the contrast with the calibration of γ in Section 3.1.1.

38Because I solve the model on a discrete grid, and because I implicitly assume a small moving cost to break ties in q,
this has modest consequences for relatively small counterfactuals such as removing the R&D subsidy. It does mean that
my results, as striking as they are, understate the long-run partial equilibrium impact of R&D subsidies.

39Growth declines from 2.0 to 1.96 percent. Innovation by entrants, which is not captured in Table 4, increases in
response to the lower ∆ and partly counteracts the decline in innovation by incumbents.
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Table 4: General vs Partial Equilibrium Effects

Value General Equilibrium Partial Equilibrium
Matched share ∼1.0 0.88
Average q ∼1.0 ∼1.0
Average h ∼1.0 0.76
Average r 0.94 0.76
Average r|Matched 0.95 0.86
Average φ 0.97 0.82

*Notes: This table compares the long-run general and partial equilibrium effects of R&D subsidies. I normalize all
values based on their equivalent in the baseline calibration, so a value of 0.95 indicates a 5 percent decrease relative to the
baseline. "Matched share" is the share of product lines matched to an inventor. "Average q" is the average match quality
conditional on being matched, "Average h" is the average search effort (number of headhunters hired) per product line,
"Average r" is the average amount of the research good purchased per product line, "Average r|Matched" is the average
amount of the research good purchased per matched product line, and "Average φ" is the average rate of innovation per
product line. All values are unconditional on being matched unless specified. I report all values to two decimal places
only. See Section 4.3 for details, and Appendix A.7 for a more detailed explanation of how I calculate the distribution of
product lines across match qualities in the partial equilibrium exercise.

innovation for affected product lines by almost 20 percent in the long run. The effects of creative

destruction operating through the classical incentive channel (captured in the rate of investment in

r conditional on being matched) and the novel “Blackberry effect" (captured in the share of matched

divisions) each account for about half of the decline of innovation.40

It is interesting to compare these results to Rao (2016), who finds that research effort responds

to tax incentives with a lag, and that the long-run effects of R&D subsidies are larger than the

short-run effects. My model can help rationalize these lags by introducing frictional search for

inventors, but also shows that the long-run partial equilibrium effects of R&D subsidies may be

much greater than their long-run general equilibrium effects.

5 Conclusion

In this paper I study a key step in the process of innovation: the allocation of inventors to firms. I

find that inventor mobility across firms is associated with a large increase in the rate of innovation,

and that such moves are quite frequent. Intuitively, the fact that mobility is associated with such

40This understates the degree to which introducing this new channel should shift our priors about the effects of R&D
subsidies for two reasons. First part of the incentive effects come from forward-looking divisions anticipating that they
will be less likely to match—hence, even the traditional channel through which creative destruction affects innovation
will be understated in traditional growth models. Second, this comparison is at the product line level, but firms without
an R&D subsidy will end up with many fewer product lines in partial equilibrium.
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large gains suggests that the quality of the match between an inventor and a firm is an important

determinant of the rate of innovation, and the fact that inventors move so often suggests that the

market for inventors is frictional and that inventors do not necessarily find the right match for their

talents right away. I formalize these intuitions with a novel Schumpeterian growth model that

features frictional search for inventors and a crucial role for the quality of the match between the

inventor and the firm. I discipline this model with new moments about inventor-firm dynamics,

and I use the model to shed light on the role that the market for inventors plays in firm-level and

economy-wide growth. I show that search frictions for inventors can help rationalize why some

firms grow dramatically quickly whereas others stagnate. I then show that search frictions in the

market for inventors are a significant drain on growth, and that conventional innovation policies do

not recover this lost growth. This paper opens up the black box of research spending and takes the

market for inventors seriously, and shows that doing so helps open up new avenues for research

into growth, firm dynamics, and innovation policy.
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Appendices

A Appendix: Solving the Model

I use a discretized version of the model, hence why I write sums rather than integrals in this section.

A.1 Pseudocode

• Step 0: Initialize the model with a guess for distributions F, FV , FN ; general equilibrium

objects π, g, ∆, w; values V, N; and policies r, h, e as described below.

– Re-scale the ẑ grid so Z = 1.

– Guess that min[νM · 0.5, 0.5] inventors are matched, i.e. that either half of inventors

or half of all divisions are matched (this ensures that, no matter what I put for M and

ν, I will not guess that more than a measure 1 of inventors or divisions are matched).

Guess that matched divisions are uniformly distributed across the ẑ, q grid, and that

unmatched divisions are uniformly distributed across the ẑ grid.

– A reasonable first guess for V and N, conditional on the guess for the number of workers

in production Lp, would be the present discounted value profits accruing to a division

with productivity ẑ assuming no innovation, drift from growth, or creative destruction.

I increase these values by 10% for V to take into account that matched division have

the option to innovate, and I increase them by a further multiplicative factor equal to

0.1 · q/ql for each value of q to take into account the greater value of a division with a

good match.

– Guess that 10 percent of non-inventor workers will work in producing the research good

(this is r).

– Guess that 5 percent of non-inventor workers will work in entry (this is e).

– Guess that 0.1 percent of non-inventor workers will work in search (this is h), and that

search effort is uniform for all divisions.

• Step 1: Holding fixed the distributions, update policies, values, and GE objects.
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– Step 1a: Holding fixed policies r, h, e and values V, N, solve for the GE terms ∆, w, π, g.

– Step 1b: Re-scale every element of the q grid and ι by a common term κ until g is 2%41,

unless performing a counterfactual. Check if the growth rate had converged; i.e. check if

it had already been 2% before rescaling.

– Step 1c: Holding fixed values and GE terms, solve for policies r, h, e.

* If divisions demand R > 0.6M(1− ν) units of labor as an input into research, scale

down their demands by a factor 0.6M(1− ν)/R such that no more than 60% of the

non-inventor labor force is used for research.

– Step 1d: Holding fixed policies and GE terms, update values V and N using an implicit

step, and check if they have converged.

– Step 1e: Repeat 1a-1d until values and the growth rate converge, or until the maximum

number of inner-loop iterations is reached.

• Step 2: Update the distributions using the policies recovered in Step 1.

– If ∑ẑ,q FV(ẑ, q) > Mν, i.e. there are more matched divisions than inventors, scale down

the mass of matched divisions until only 90% of inventors are matched, and scale up the

mass of unmatched divisions until the overall mass is again 1.0.

• Step 3: Repeat 1 and 2 until values, distributions, and the growth rate converge, or until the

maximum number of outer-loop iterations is reached.

A.2 Solving for GE objects

To calculate the rate of creative destruction ∆, I sum up innovative activity among matched divisions

and entrants.

∆ = eι/Eψ +

ˆ
ẑ,q

φ(q)dFV(ẑ, q)

This allows me to get the growth rate g, which is ∆λ/(σ− 1).

41I follow Engbom (2020) in holding fixed the growth rate and scaling the parameters to ensure that this growth rate
is attained. I find, as he did, that the solution algorithm is more stable if I let the parameters vary but keep the growth
rate fixed than vice versa.
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Note that both ∆ and g can be scaled if we multiply ι and every value of q by a multiplicative

κ = 0.02/g. Doing so would rescale innovation such that the growth rate would be 2 percent if

policies were held fixed.

Wages and flow profits are as usual in CES models of monopolistic competition:

w = Y/(µl)

π = (µ− 1)ẑwL

A.3 Updating Policies

Solving for entry e is straightforward conditional on knowing the value of creative destruction

CD = ∑ N(λẑ)F(ẑ). Recall the three key equations for this problem:

φs = ι/Eψ

φsCD = w

φse = E

Combining the first and second equation immediately yield:

E =

(
ιCD

w

) 1
ψ

Combining this with the first and third yields:

e =
1
ι

(
ιCD

w

) 1−ψ
ψ

Now I turn to the problem of the matched division choosing r. Conditional on CD, w, and τr,

the division’s effort level r can be solved in closed-form:

max
r

(1− (1− τr)χ)qrγCD− (1− τr)wr
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r =
(
(γ(1− (1− τr)χ)qCD)

(1− τr)w

) 1
1−γ

Finally, I calculate the number of workers hired as headhunters. Conditional on the value of

meeting Ω and on the contact rate per “unit of matching” Cs, search effort can be solved as follows

for unmatched and matched firms, respectively:

ηhη−1ΩCs = w(1− sh)

h =

(
w(1− sh)

ηΩCs

) 1
η−1

ηh(q)η−1Ω(q)Cs = w(1− sh)

h(q) =
(

w(1− sh)

ηΩ(q)Cs

) 1
η−1

With r, h, e solved, labor used in production l is M(1− ν) minus labor used for all three other

functions.

A.4 Updating Values

I use a discretized version of the HJB equations, with ẑ and q on grids. I approximate the derivative

of V and N with respect to ẑ using a standard upwinding approach:

∂V(ẑn)

∂ẑ
∼ V(ẑn)−V(ẑn−1)

ẑn − ẑn−1

I stack V and N into a single vector S and construct an intensity matrix across states A that

summarizes all the flows across these states. This matrix takes policies as given and incorporates

the costs of taxation and wages incurred when a division or inventor moves across states. I denote

S as the stacked vector of values and f as the flow utility coming from profits, research costs, and

effort.
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St+ε = St + ε( f + ASt − (ρ− g)St+ε)

This can be rewritten as:

[(
1
ε
+ ρ− g

)
I − A

]
︸ ︷︷ ︸

T

St+ε =
1
ε

St + f

Finally we get the updated vector of values:

St+ε = T−1
(

1
ε

St + f
)

I set a large value for ε, check for convergence, and then update the value of S by taking a

convex combination of St+ε and St.

A.5 Updating Discretized Kolmogorov Forward Equations

It is sufficient to characterize the distribution of divisions across states (ẑ, q)—knowing this distri-

bution automatically pins down the distribution of workers. Denoting G as the stacked vector of

distributions across states and K as the transition matrix across states, we get:

Gt+ε = Gt − εK′Gt

It is possible to solve for the stationary distribution directly by iterating on this equation

repeatedly or by looking for the solution to:

K′G = 0

I find the following approach works well: first, scale every element of K′ by some factor s such

that the sum of absolute values in each row is much less than 1.0 (recall that only the diagonal

elements of K′ are negative). Next, add I to K′. Then look for the solution to:

(I + sK′)G = G
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(I + sK′) is a stochastic matrix where all elements are positive and the rows sum to 1, and I can

find G using off-the-shelf routines for finding the stationary distribution of a stochastic process.

The matrix K used to update the distribution is different from the one used to update the values

(A). First, a creatively destroyed division does not derive value from the new division created to

replace it, but the “destroying” division does. I do not keep track of the “destroying” distribution

in A, but I do in K. Second, K does not incorporate taxes.

Notice one slightly unusual thing about K: the elements of the distribution actually show up

directly in the matching probabilities. To solve for G, I hold K fixed and update till G converges,

then I recalculate K and re-solve for G. I effectively iterate on solving for K and G until both

converge.

A.6 Extreme Values of ẑ

I solve the model on a discretized grid of ẑ, which does not have a natural upper or lower bound. In

this section, I describe a few adjustments that I make to the model to deal with this discretization.

First, at the lowest point of the ẑ grid, I set the terms ∂V(ẑ, q)/∂ẑ and ∂N(ẑ)/∂ẑ to 0.

Second, I modify the value of creative destruction CD. If a division or unmatched inventor

creatively destroys a rival division with ẑ > ẑmax, the highest value of ẑ on the grid, they spin off a

new unmatched division with productivity ε→ 0 greater than the rival, not λ greater. Hence, the

value of CD becomes:

CD = ∑ N(min[ẑmax, λ + ẑ])F(ẑ)

Finally, when updating g, I set∆ to 0 for the highest value of the grid.

A.7 Partial Equilibrium Exercise: Solving for the Distribution

I define mq as the share of affected divisions in the counterfactual at match quality q, where q = 0

denotes an unmatched division. I define xq as the flow rate at which an inventor will be poached

away from a division with match quality q. I define pa,b as the flow rate at which a division at

match quality a will meet an inventor, draw match quality b, and successfully match. The term ea is

the rate of entry of new affected product lines as a share of the total.
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The fraction of affected divisions that are unmatched must be such that inflows balance outflows.

Inflows come from entry, matches breaking, inventors being poached, and firms expanding into

new varieties and creating new unmatched divisions. Outflows come from creative destruction or

divisions matching.

m0 = m0 + ea +
10

∑
q=1

mq(δm + δi + xq + φq)︸ ︷︷ ︸
Inflows

− (∆ +
10

∑
q=1

p0,q)m0︸ ︷︷ ︸
Outflows

The fraction of affected divisions at match quality q must also be such that inflows balance

outflows. Inflows come from other divisions at lower points on the quality distribution matching,

and outflows come from creative destruction, poaching, and matches breaking.

mq = mq +
q−1

∑
a=0

pa,qma︸ ︷︷ ︸
Inflows

− (∆ + δm + δi + xq)mq︸ ︷︷ ︸
Outflows

I add one more constraint so that the terms m will sum to 1 and so that the optimizer can find e:

m0 +
10

∑
q=1

mq = 1

I use a standard optimization routine to solve for all values of m and for ea.
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B Appendix: Deriving Growth and Drift Rates

In this section I offer heuristic explanations of how to calculate g and where the term g(σ −

1)∂N(ẑ)/∂ẑ in the HJBs comes from. To do so, the following derivations about ẑ will be useful.

ẑ =
( z

Z

)σ−1

Z =

(ˆ
ẑ

zσ−1F(z)
) 1

σ−1

Z =

(ˆ
ẑ

ẑZσ−1F(z)
) 1

σ−1

1 =

(ˆ
ẑ

ẑF(z)
) 1

σ−1

=

ˆ
ẑ

ẑF(z)

The growth rate g can be calculated by calculating the percent change in Z over an interval of

time divided by the length of the interval, and then taking the limit of that expression as the length

of the interval goes to zero.

g = lim
ε→0

1
ε

Zt+ε − Zt

Zt

Recall:

Zt =

(ˆ
z

zσ−1Ft(z)
) 1

σ−1

= Z
(ˆ

zt

zσ−1

Zσ−1 Ft(z)
) 1

σ−1

=

(ˆ
z

ẑFt(z)
) 1

σ−1

At each point of the productivity grid, some share of the mass at that grid point jumps from ẑ

to λ + ẑ at a rate of ∆. Over a time step ε, this means that:

Zt+ε =

(ˆ
z
(ẑ + ε∆λ)Ft(z)

) 1
σ−1

Dividing the numerator and denominator by Zt, dropping time subscripts, and we get:

g = lim
ε→0

1
ε

(´
z(ẑ + ε∆λ)Ft(z)

) 1
σ−1 − 1

1
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Simplifying a bit:

g = lim
ε→0

1
ε

(
´

z ẑFt(z) +
´

z ε∆λFt(z))
1

σ−1 − 1
1

= lim
ε→0

1
ε

(1 + ε∆λ)
1

σ−1 − 1
1

Taking the limit as ε→ 0 yields the expression in the paper:

g =
∆λ

σ− 1

To understand where the term g(σ− 1)∂N(ẑ)/∂ẑ in the value functions comes from, I work

with a simplified discrete-time version of the model without innovation. This can be written as:

N(Zt, ẑt) = επ(Zt, ẑt) + e−rεN(Zt+ε, ẑt+ε)

Because π scales multiplicatively in Z and ẑ, this can be rewritten with a constant term Ñ:

ÑZt ẑt = επZt ẑt + e−rεÑZt+ε ẑt+ε

Dividing both sides by Zt and using the fact that Zt+ε = Zteεg:

Ñẑt = επẑt + e(g−r)εÑẑt+ε

Note that a standard Euler condition gives us that r = ρ+ g, simplifying terms a bit. Subtracting

Ñẑte−ρε from both sides and dividing by ε we get:

Ñẑt (1− e−ρε)

ε
= πẑt +

e−ρεÑ(ẑt+ε − ẑt)

ε

Taking the limit of both sides as ε→ 0 we get:

ρÑẑt = πẑt + lim
ε→0

e−ρεÑ(ẑt+ε − ẑt)

ε

To simplify the right hand side, recall ẑt = (zt/Zt)σ−1, meaning ẑt+ε = (zt/(Ztegε))σ−1 =

ẑte(1−σ)gε. This lets us rearrange and get:
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ρÑ = π + lim
ε→0

e−ρεÑ(e(1−σ)gε − 1)
ε

This simplifies to:

ρÑ = π − g(σ− 1)N

And recall that N = Ñẑ, so N′ = Ñ.
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C Appendix: Properties of the Equilibrium

In this section, I provide some more plots to help illustrate the properties of the equilibrium.

In Figure 8, I illustrate the distribution of product lines across relative productivities ẑ, and

also break them out into matched and unmatched. There are two main takeaways from this first

plot: First, the vast majority of product lines are unmatched because there are far fewer inventors

than product lines. Second, the distribution of match qualities among unmatched product lines

is very slightly more right-heavy than for matched lines because creative destruction both raises

the relative productivity of a product line and breaks any existing match at that line. This is also a

consequence of the fact that I only model creative destruction, not own-innovation.

In Figure 9, I display the joint distribution of matched product lines across both relative produc-

tivity ẑ and match quality q. Given what we see in Figure 2 and Figure 8, it is not surprising that

matched productivity lines tend to have high match qualities and low relative productivities.

In Figure 10, I plot the intensity of search effort (as measured by the mass of headhunters)

across matched divisions with different match qualities q, normalized so that search effort for an

unmatched division is 1.0. All matched divisions devote far less effort to search than unmatched

ones, and search effort is monotone decreasing in match quality q. Those matched divisions with

the highest level of match quality q = qh do not search at all as they cannot replace their current

inventor with a better one.
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0 1 2 3 4 5 6 7

All
Unmatched
Matched

Group

0.0

0.1

0.2

0.3

0.4

S
h
a
re

 o
f 
P
ro
d
u
c
t 
L
in
e
s

Figure 8: Distribution of Product Lines Across Relative Productivities
Notes: This figure plots the distribution of product lines in relative productivity (ẑ) space. I solve the model on a

discrete grid of relative productivities. The horizontal axis is the relative productivity, and the vertical axis is the share of
product lines with that productivity. In each ẑ bin, the share of matched and unmatched lines add up to the share of all
lines by construction. The ẑ grid actually goes all the way to 19, but there is so little mass in those extreme gridpoints
that I do not plot them.
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Figure 9: Joint Distribution of Matched Product Lines Across ẑ and q
Notes: This figure plots the joint distribution of matched product lines in relative productivity (ẑ) and match quality

(q) space. The horizontal axis is relative productivity, the vertical axis is match quality, and the color indicates the share
of matched product lines in that cell. As in Figure 8, I cut off the ẑ axis as there is vanishingly little mass in the highest
relative productivities.
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Figure 10: Search Effort for Matched Divisions
Notes: This figure plots the quantity of “headhunter" labor h hired by matched divisions with different relative

productivities q. I normalize the graph so that the quantity of “headhunters" hired by an unmatched division is 1.0. The
divisions with the highest match quality exert no search effort.
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