
11. Describing Angular or Circular Motion
Introduction 

Examples of angular motion occur frequently. Examples include the rotation of a bicycle tire, a 

merry-go-round, a toy top, a food processor, a laboratory centrifuge, and the orbit of the Earth 

around the Sun. More complicated examples involving rotational motion combined with linear 

motion include a rolling billiard ball, the tire of a bicycle that is ridden, a rolling pin in the kitchen, 

etc. However, mostly we will consider only the case of pure rotational motion since it is simpler. 

Also, again for reasons of simplicity, we will look only at angular motion that has a fixed radius. 

Keep in mind that there are two kinds of angular motion: rotational motion (e.g., the Earth rotates 

on its axis once every 24 hours) and revolutionary motion (e.g., the Earth revolves about the Sun 

and makes one complete cycle in a year).
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Measuring Angular Distance q

1. The Degree Measure of q (example: 35°, where degree is represented by the symbol °)

A. This is the most common way of measuring angular motion. One complete cycle or revolution is 

divided up into 360 equal bits called degrees. 

B. The 360 is arbitrary and is kept for historical reasons but any other number could have been 

chosen, for example, 100. 

C. Important: Notice that the size of the degree is unrelated to the size of the circle. For a circle of 

radius r, there are 360° in one revolution or complete trip around the circle.

D. q is the angular measure of distance traveled. q for angular motion is the analog of the arc 

distance traveled S for linear motion. (We have used x, y, s, h, etc. for the linear distance before; 

these all mean the same.)

E. A related measure of angular distance is the cycle. One complete cycle equals 360°. You should 

be able to convert from degrees to cycles and vice versa.

Examples: 35°=0.097 cycles.  0.75 cycle = 270°

35 ° *
1 cycle

360. °

0.0972222 cycle

0.75 * 360.

270.
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Often angular speeds are given in cycles/sec. Example: Con Ed supplies power at 60 cycles/sec.

F. The rev short for revolution measure is also used in some applications. 

One rev = One cycle, so rev and cycle are basically interchangeable. 

G. Each degree is subdivided into minutes or min so that one degree = 60 minutes. Each minute 

is subdivided further into seconds or sec so that one minute = 60 seconds. This use of the terms 

minutes and seconds has (almost) nothing to do with the use of these terms to measure time. 

Example: 48.32° = 48° 19.2 min.

0.32 ° *
60 min

1 °

19.2 min
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The Radian Measure of Angular Distance q

A.  You probably are familiar with the concept of one revolution ( 1 rev in shorthand) being one 

complete turn around a circle which is also 360°.  It is easy enough to convert from degrees to 

revolutions by setting up a proportionality.  Suppose you want the angle q in degrees or ° measure 

corrresponding to 2.5 rev so you can write the proportionality

q
360 ° = 2.5 rev

1 rev   or    q = 360° ä 2.5 = 900°

since the rev unit cancels out.  You can do the inverse conversion to (for example) find the angle q 

in rev measure corresponding to 60° 

q
1 rev = 60 °

360 °   or    q = 16 rev >0.17 rev

B. The radian or rad is another way measuring angular motion. The radian measure is used quite 

often in scientific applications as it is the unit of angular measure in the S.I. system.  

C. The radian measure of an angle q is defined 

q = Sr  rad

where q  is the measure of the angle in radians (or rad for short hand), r is the radius of the circle 

measured in meters and S is the arc distance in meters along the part of the circumference 

associated with the angle q.

D. For one complete revolution, the distance along the circumference is S=2pr, so the angle q=2pr/r 

= 2p radians associated with one rev which is also 360°.

E. The radius r cancels out so the angular measure q = 2p rad in one revolution is NOT dependent 

on the size of the circle. The radian measure has this in common with the degree measure. 

F. Conversion of a given angle q from being measured in degrees to being measured in radians is 

done with the conversion 360° = 2p rad

EXAMPLE: For our angle  35°, we find the angle q = 0.61 rad by setting up the proportionality

q
2 p rad = 35 °

360 °
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D. For one complete revolution, the distance along the circumference is S=2pr, so the angle q=2pr/r 

= 2p radians associated with one rev which is also 360°.

E. The radius r cancels out so the angular measure q = 2p rad in one revolution is NOT dependent 

on the size of the circle. The radian measure has this in common with the degree measure. 

F. Conversion of a given angle q from being measured in degrees to being measured in radians is 

done with the conversion 360° = 2p rad

EXAMPLE: For our angle  35°, we find the angle q = 0.61 rad by setting up the proportionality

q
2 p rad = 35 °

360 °

and using Mathematica we get after canceling the degrees

35. *
2 p

360
rev

0.610865 rev

You should be able to quickly convert between the degree, radian, cycle, and revolution measures 

of an angle. 

F. Unit-checking: The right-hand side of q= S
r  rad has meters in both the numerator and the 

denominator. These cancel out, which is good since there are no meter units in q measured in 

radians. However, while q= S
r  rad defines the radian, this unit is nowhere to be found on the right-

hand side of the equation unless you put it in by hand. Conclusion: Do not worry too much about 

radian units when working with units in kinematic equations. (See below for more comments.)
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Angular Velocity w

Recall that the average linear velocity Xv\ was defined as 

Xv\ =
xf - x0
Dt  

where x0 is the position of the object at t0, xf  is the position of the object at a later time tf  and Dt = tf  

- t0. Since the angular measure q is the angular analog of the linear distance measure, it is natural 

to define the average angular velocity Xw\ as

Xw\ =
qf-q0
Dt

where q0 is the initial angular position of the object when Dt=0 and qf  is the final angular position of 

the object after a time Dt of angular motion. Actually, we most often use the above equation in the 

form

(1)qf = q0 + Xw\ t

where Dt = t in the case where the initial time is 0. The instantaneous angular velocity w at a 

particular time can be defined similar to the instantaneous linear velocity 

 w = Limit
DtØ0

qf-q0
Dt

but we will not have much use for this. 

Units: q is measured in radians so w has units of rad/sec.
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Angular Acceleration a

Finally, recall the definition of linear acceleration a for the motion of an object with a changing 

linear velocity from v 0 to a final linear velocity v f  over a time Dt

Xa\ = v f-v 0

Dt

The angular analog of linear acceleration is the angular acceleration a, which is useful for 

situations where the angular velocity a is changing. Suppose the original angular velocity w0 

changes to a final angular velocity wf  over a time Dt. Then the average angular acceleration Xa\ is 

defined

Xa\ = 
wf -w0

Dt

Actually, we will usually use this definition in the form

(2)
wf = w0 + Xa\ t

It is possible to define an instantaneous angular acceleration similar to the instantaneous linear 

acceleration, but for the problems we are interested in this is not necessary. 

Units: The definition of Xa\ involves w in the numerator which has units radians/sec and time t in the 

denominator, so Xa\ has units of rad/sec2.
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An Equation for the Average Angular Velocity Xw\

When the angular velocity is not constant, there is a simple formula for the average angular 

velocity Xw\ in terms of the original angular velocity w0 and the final angular velocity wf  after a time 

Dt

(3)
Xw\ =

wo + wf

2

Equation (3) holds provided the angular acceleration is constant. The derivation of equation (3) is 

similar to that for the formula for linear motion Xv\ = v0+vf2  and the derivation of equation (3) is left as 

homework.

Two More Kinematic Equations for Angular Motion

You might guess that since we have these analogies

 

Measure Linear Motion Angular Motion
distance x q

velocity v w

acceleration a a

between linear and angular motion that there are two angular analogs for the two other kinematic 

equations for linear motion

Ûx = v 0 t + 12  a t2   and   v f
2 = v 0

2 + 2 a Ûx

 and you would be right. The two additional equations are  

(4)
q = w0 t +

1

2
a t2

(5)
w f

2 = w 0
2 + 2 a q

The derivations of these two equations are similar to the derivations in the case of linear motion 

and will be left as an exercise for you. 

Important Note: When using the kinematic equations, including (4) and (5) above, it is a good idea 

to always use the radian measure for q, w, and a. If you are given w in, say, rev/sec, convert to 

rad/sec before proceeding. Above all do NOT mix degree, radian, and rev units in the kinematic 

equations. 
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The derivations of these two equations are similar to the derivations in the case of linear motion 

and will be left as an exercise for you. 

Important Note: When using the kinematic equations, including (4) and (5) above, it is a good idea 

to always use the radian measure for q, w, and a. If you are given w in, say, rev/sec, convert to 

rad/sec before proceeding. Above all do NOT mix degree, radian, and rev units in the kinematic 

equations. 
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The Radial - Tangential Coordinate System 

When dealing with linear motion, it was found useful to define an XY coordinate system that 

simplified the problem to be solved. For example, it was sometimes useful to have a coordinate 

system fixed with respect to the moving object while for some other problems it was useful to have 

a coordinate system fixed with respect to the laboratory or the Earth. For angular motion, it is 

useful to have a coordinate system that is moving along with the object in angular motion. By 

convention, the axes of this coordinate system are called not XY but Tangential and Radial. The 

Radial direction runs along the radius, as you might guess, and the positive Radial direction is 

inward. The Tangential direction is perpendicular to the Radial direction, and as you might 

guess, the Tangential direction is tangent to the circle of motion at the location of the moving 

object. A picture might help clarify things. This example is of a disk rotating counter-clockwise.
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The Tangential Velocity vT  

Just as for linear motion, the tangential velocity can be calculated using vT = S
Ût  where S is the 

distance traveled along the circumference when the point of interest moves from point A to point B 

(as in the figure below.) It was also assumed it took a time Ût to move from A to B.

For the moment, assume the disk is rotating at a constant angular velocity w. Because of this, 

the length of the tangential velocity vT  vector is constant. The length of vT  is just the distance 

traveled S divided by the time of travel Ût, thus

vT = S
Ût

 Using the connection S = r q between S the distance traveled on the circumference and q the 

angular measure we get from the above equation

 vT = Hr qL

Ût
= r q

Ût
= r w

Note that we used the definition of the angular velocity w = q

Ût
 to get the last relation above. 

Thus we have found an important relationship between a linear quantity, vT, and an angular 

quantity w

 vT = r w 

Notice that the form of the above relation is similar to the relation S = rq, which connects the 

linear measure of distance S with the angular measure of distance q. Both relations involve the 

radius r in the same way. You might guess that there is a similar relationship aT = ra between 

the linear tangential acceleration aT  and the angular acceleration a and shortly we will see that 

this is true.
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The Tangential Acceleration aT

You might think there is no tangential acceleration aT  in the above example since w the angular 

velocity is constant, and you would be correct. However, suppose w is NOT constant and instead 

changes from w0 to wf  over a time Ût. Then the tangential velocity will change from v 0
T = r w0  to  

v f
T = r wf and thus the velocities change in the definition the tangential acceleration 

aT = Iv f
T - v 0

TMë Ût. 

We easily get

aT =
Hrwf-rw0L

Ût = r ä
Hwf-w0L

Ût = r a 

or, more simply:

(6)aT = r a
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Summary: Connection between Tangential (Linear) Quantities and Angular 
Quantities

You get from angular quantities to linear quantities by multiplying by the radius r

(7)

S = r q
vT = r w

aT = r a

and this is easy enough to remember. 

Notation: 

1. Quite often we will write just v instead of v T  because there will be only one kind of linear velocity 

in the angular problems we consider. 

2. The tangential acceleration a T  is another matter, since we will shortly talk about another 

acceleration in the Radial direction, aR . So the superscript T will be kept in the Tangential 

acceleration aT .

3. You might have trouble remembering the above equations (do you divide or multiply by r?).  

However, looking at the units involved helps. For example, S is measured in meters and q has no 

meters involved, so you must multiply q by r to get the meter units on both sides of the equation.
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Newton's 2nd Law of Motion: 

Remember that F = M a  is shorthand for two equations  Fx = M ax  and Fy = M ay .  For angular 

motion the XY coordinates are fixed to the particle in angular motion.  So the XY coordinates are 

moving with respect to the ground. It makes sense when describing angular motion to use the 

tangential T direction and radial R direction instead of XY. For one thing, the force F R holding the 

particle in angular motion is in the inward radial direction. The force in the tangential direction F T  

speeds up or slows down the angular motion. So instead of the XY coordinate system fixed with 

respect to the ground we use the RT coordinates fixed to the object moving in angular motion. 

Thus we write

(8)FR = M aR and FT = M aT

and for the moment we will focus on the first, or Radial, equation. 

Important Aside: Until stated explicitly near the end of these notes, always assume that the 

motion is being observed by a person on the ground (represented by a stick figure in the above 

diagram). Newton's 2nd Law holds for such an observer.

Centripetal force is another term for the force in the Radial direction FR. Centripetal means "center 

seeking," which is toward the center of the circle. But what is FR physically?

Well, it depends on the circumstance: 

1. If you tie a pail to a rope and swing it over your head, then the centripetal force is the tension 

force in the rope that holds the pail in a circular motion.

2. The orbital motion of the Earth about the Sun is due to the centripetal force we call gravity.

3. The electrons are held in their orbits about the nucleus of an atom by the electric force. 

What about the centripetal acceleration aR? Is there anything special about it besides its being in 

the Radial direction?
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The Centripetal Acceleration aR

 There is a very useful formula for the acceleration in the Radial direction aR 

aR = v 2

r

Here v is the linear tangential velocity vT  and r is the radius of the angular motion. We will derive 

this result shortly. You might already be familiar with the above equation in connection with 

something called the "centrifugal force" but that might lead to some misconceptions as will be seen 

shortly.

Observation:  It looks like the larger the radius r of the angular motion, the smaller the Radial 

acceleration aR, but this is WRONG because the tangential velocity also depends upon r. 

Remember v = r w, so using this in the above equation to eliminate v   results in

 aR = Hr wL 2

r  = rw 2 or simply

aR = w 2 r   

The angular velocity w = q
Ût  depends upon the angle q, and the angle q is independent of r, so 

w=q/t is also independent of r. Looking at the above equation it is easy to see that aR 

INCREASES as r increases. 
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Derivation of the Formula for the Radial Acceleration aR

There is an acceleration aR in the Radial direction because the tangential velocity V is changing its 

direction. Recall that linear acceleration is a vector quantity defined by

a = vf -v0
Ût  = D v

Ût   or  a  = D v
Ût

where D vf  = vf - v0.  A picture of the angular motion going from A to B might help: 
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Observations:

1. There is no tangential force FT for now, so the angular velocity w is constant and  the length of 

the tangential force vector stays the same in going from A to B, vf = v0  . 

2. But this does NOT mean that D v = vf - v0 = 0 . You can see that v0 is in a different direction 

from vf  in the diagram above, and as a result, D v ¹≠ 0.

3. Remember a vector is the same provided its length and direction are the same.   So you can 

move a vector anywhere you want provided you keep its length and direction the same.   In 

particular move the vector v0 parallel to itself until the tail of the vector v0  is at the tail of vector vf .  

After this is done, a vector diagram of just v0, vf ,  and D v   appears below.  

The D v makes sense because D v = vf - v0  can be written v0 + D v = vf . This means that D v 

added to v0 yields vf , as in the diagram. 

4. What is needed in the formula for the acceleration is D v , which can be obtained by geometry 

using similar triangles. In the original diagram, look at the triangle formed from 0AB. (Aside:  OK so 

OAB is not a triangle since one side is curved; however, draw a straight line between A and B to 

make a triangle and for DtØ0 this approximation gets better.)  In any case, the triangle OAB has 

two sides of equal length r which is the radius of the circle with the angle q between these two 

sides.  0AB is similar to the triangle in the smaller diagram above involving only velocities  v0, vf ,  

and D v  since this triangle also has two sides of equal length vf = v0  = v with the same angle 

q between them. (Aside:  You can convince yourself that q in the triangle OAB is the same as the q 

in the smaller diagram involving just the velocities provided you notice that the tangential velocity is 

always pependicular to the radius.  The radius and the tangent are tied together so if the radius 

goes through an angle q so does the tangent. By the way, the two triangles are similar since they 

both are iscocles triangles with the same angle q between the equal sides.)  Similar triangles tells 

us that the ratio of side opposite the angle q to the length of the equal sides is the same in the two 

similar triangles, that is

S
r =

D v
v0

= D v
v   and thus  D v =

S v
r

(Aside:  This entire step #4 is a little hard to explain in writing so come to class and I will try to 

convince you by giving a truly "hand waiving argument". Or a least I can try to answer your 

questions.)
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(Aside:  This entire step #4 is a little hard to explain in writing so come to class and I will try to 
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5. Since the magnitude of the tangential velocity is not changing vf = v0  = v, we get the 

result

  a  = D vf
Dt  = vr ä s

Dt  = v
2

r

 

keeping in mind that v=s/Dt is the tangential velocity too.  So we get simply a=v2 ë r  for the 

centripetal acceleration a in the radial direction.  v is the tangential velocity and the radius of the 

circle r.  This is obviously a lot of work for such a simple result but it is a useful result. For example, 

the formula explains how the centrifuge works in the biology or chemistry laboratory.  
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The Radial Part of Newton's 2nd Law: Centripetal Force

Recall that FR = M aR. We call the radial force FR the centripetal force Fcentripetal and the radial 

acceleration is aR = v
2

r , so we have 

Fcentripetal = M v
2

r

which is the radial part of Newton's 2nd Law. Another useful form is obtained from 

v = w r 

Fcentripetal = M w2 r

It is important to keep in mind that the centripetal force Fcentripetal is a real force because it is 

produced by something (for example, the tension in a rope, gravity, electric force, etc.). The 

centripetal force cause the mass to move in a circle since the natural tendency of the mass is to go 

in a straight line.  If you somehow could stop the centripetal force (by for example, cutting the rope 

connected to the moving bucket) then the bucket would continue in a straight line tangent to the 

circle at the point where the rope was cut.  

Also notice that the right hand side M w2 r  of Newton's 2nd law, involves the mass M.  So 

all other things (that is, w and r) being equal two masses with different M will have a different radial 

acceleration.  This is the principle behind the gas centrifuges in Iran which are being discussed in 

the news in the news.  In this case, two isotopes of Uranium U235 and U238 are separated or 

"enriched" either for nuclear power generation or nuclear weapons.  Two atoms are isotopes if they 

have same number of protrons 92 but different number of neutrons; 3 in this case.  It is the U235 

isotope (the atom that is slightly less massive) that is useful in fission devices and the U238 after 

separation is put to other uses.  
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The Centrifugal "Force" 

Suppose we look at way things are viewed by an observer fixed to the rotating object as indicated 

below:

Question: How does the angular motion appear to the person sitting on the moving mass? In 

particular, what does Newton's 2nd Law ⁄ FR = M aR look like for that person?

Importance of this Question: We would like to apply Newton's 2nd Law to rotating frames of 

reference. After all, we live on a rotating coordinate system because the Earth is rotating about its 

axis. (The Earth is also revolving about the Sun, which makes the Earth's coordinate doubly 

"rotating.") 

Answer: The mass does not appear to be moving so aR=0 for this person. Newton's 2nd law for 

the radial part looks like ⁄ FR = M aR = 0. So the sum of the forces should be zero ⁄ FR =0 .  

However, the person on the mass knows of only one force, the Fcentripetal, so there is something 

wrong with Newton's 2nd Law for the person viewing things on the mass. Actually this should not 

be a surprise, since this person is in a non-inertial reference frame, in which Newton's 1st Law 

does not hold. This frame of reference is accelerated by centripetal acceleration with respect to the 

ground. (For example, say you are on a merry-go-round and drop a mass. Once you release the 

mass, there is no horizontal force to keep it moving in a circle, and the mass flies off the merry-go-

round in addition to falling downward.)

Resolution of the Problem: aR=0 and nothing much can be done about this. However, if you 

rewrite the radial part of Newton's 2nd Law (which was OK for the observer on the ground) as 

⁄ FR = Fcentripetal - M v
2

r = 0

Then define the centrifugal "force" as 

Fcentrifugal = - M v
2

r
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mass, there is no horizontal force to keep it moving in a circle, and the mass flies off the merry-go-

round in addition to falling downward.)

Resolution of the Problem: aR=0 and nothing much can be done about this. However, if you 

rewrite the radial part of Newton's 2nd Law (which was OK for the observer on the ground) as 

⁄ FR = Fcentripetal - M v
2

r = 0

Then define the centrifugal "force" as 

Fcentrifugal = - M v
2

r

 and then Newton's 2nd Law for the observer in the rotating frame of reference appears

Fcentripetal + Fcentrifugal = 0

So the observer on the rotating object says the centripetal force (the tension in the rope, the gravity 

force, etc.) is balanced by the centrifugal "force." You have all felt the centrifugal force when you 

are in a car going around the curve (even though it is a fictional force). None-the-less the 

centrifugal force is not a real force because there is nothing that causes it. The force you feel when 

you are in the car is the centripetal force of the car door on you making you go in a circle (your 

natural motion is in a straight line tangent to the circle of motion). 

Bottom Line: You can apply Newton's 2nd law if you are in a rotating coordinate system provided 

you add a centrifugal force.

¢ | £
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 Application: A Satellite in Orbit Around the Earth
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The radial force in this case is the force of gravity on the satellite by the Earth 

FR = GmM
r2

where m is the mass of the satellite, M is the mass of the Earth, G is the constant of Universal 

Gravitation, and r is the radius of the satellites orbit. r is the radius of the Earth plus the height of 

the satellite above the Earth's surface. The radial component of Newton's 2nd Law for an observer 

in outer space appears

FR = m v2

r

where the radial acceleration is aR = v2 ë r  . Keep in mind that the right-hand side of the above 

equation is actually just the maR part of Newton's 2nd Law. Combine the two equations above to 

eliminate FR:

m V 2

r = GmM
r2

The mass m of the satellite cancels out and solving for the velocity (actually, the speed) of the 

satellite

v = GM
r

One Use of This Equation: Suppose we want to know how fast v a satellite has to be moving in 

order to remain a height h above the surface of the Earth. If rE is the radius of the Earth then 

r=rE+h.

Notice (perhaps surprisingly) that this result for the velocity v of the satellite does NOT depend 

upon the mass m of the satellite.

© Rodney L. Varley (2010).
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