
Lecture #3. Kinematic Relations
Introduction and Summary

A.  The previous lecture introduced you to the quantities used to describe motion: 

  (1) position and displacement,  (2) velocity and speed, and (3) acceleration.  

B.  The concept of average velocity was compared with the concept of instantaneous velocity.

C.  Most of this course will deal with problems where the acceleration is constant.

      The mass on a spring and the pendulum are two cases where acceleration is not constant.

D.  This lecture will focus on the connection between the quantities used to describe motion: 

kinematic relations

E.  There are a total of five kinematic relations (two of which were introduced in the last lecture.

F.  These five kinematic relations are important in predicting the motion of an object when the 

acceleration is constant

    and these will be referred to as the  5 Magic Equations
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The First Kinematic Relation:

The Velocity:  Recall that if you collect data of positions x of a moving object at successive times t 

AND you graph the position x versus time t, THEN it is natural to focus on the slope of the graph.  

The slope of the x versus t graph in physics is called the velocity.  

TWO CASES:  

1.  Linear Graph:  if x versus t is a straight line, then the velocity is constant.  

2.  Non-linear Graph: if x versus t is not a straight line, then the velocity is not constant and there is 

acceleration.  

     In this case

    a)  the slope of the line between two points on the graph is called the average velocity Xv\ which 

is given by

(1)Xv\ =
x2 - x1

Dt

         The notation in equation (1) is a little different from the previous lecture but the meaning is 

the same.  x1 is the position of the object at time t1 and  x2 is the position of the object at time t2  

and  Dt=t2-t1 is the time between the two position measurements. 

You should probably try to remember equation (1) written in the following equivalent form

x2 = x1 + Xv\ Dt

b)  the slope of the tangent to the graph at point 1 is called the instantaneous velocity v.  v is 

obtained by imagining the second observation point is closer and closer to the first observation 

point.   This means that   t2Øt1  in equation (1) above or equivalently DtØ0

v =
x2 - x1

Dt
when Dt Ø 0

  Equation (1) is one of the 5 magic equations for kinematics.
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AN EXAMPLE OF THE USE OF EQUATION 1:  

Prediction of the Location of an Object at Some Time in the Future.

Recall the example from the previous lecture of an object moving to the right

0 1 m 2 m- 1m- 2m-3 m

When position x was graphed versus time t wet got a straight line graph with slope Xv\  = + 2 m/s.  

(The average velocity is a constant in this case since the graph of x versus t is a straight line.)

Suppose at t1 = 0 Sec the object is at the origin of coordinates so x1= 0 meters.  

QUESTION: Where will the object be when t2 = 7.5 Sec?  Using equation (1) we get 

x2 = x1 + Xv\ Dt = 0 m + 2
m

s
µ 7.5 s = 15 m

0 + 2 * 7.5

15.

So the prediction is that the object will be at position x2= 7.5 m  when Dt=7.5 s has elapsed.  Note 

this is a prediction of 

what will happen in the future.  Not only is this a later time, but the time is at a half second interval 

and last lecture

we imagined taking data only at one second intervals.  
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The Second Kinematic Equation

1.  Remember that when the graph of position x versus time t is not a straight line, the slope of the 

tangent to the graph 

at a point is called the instantaneous velocity v.  The slope of the tangent line is changing with time, 

so it follows that

the instantaneous velocity v is changing.  

2.  The instantaneous velocity v can be graphed versus time t and the slope of this graph is called 

the acceleration a.

The instantaneous acceleration a will be constant for most of this course and for this case, the 

instantaneous acceleration a

 is equal to the average acceleration Xa\ which is constant.  

The average acceleration Xa\ is defined for two points on the velocity v versus time t graph as

(2)Xa\ =
v2 - v1

Dt

         The notation in equation (2) is a little different from the previous lecture but the meaning is 

the same.  v1 is the velocity of the object at time t1 and  v2 is the velocity of the object at time t2  

and   Dt=t2-t1 is the time between the two velocity measurements.  You should probably try to 

remember equation (2) written in the following equivalent form

v2 = v1 + Xa\ Dt

Equation (2) is the second kinematic equation that will be used to solve problems of motion.  
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AN EXAMPLE OF THE USE OF EQUATION 2:  

Prediction of the Instantaneous Velocity v of an Object at Some Time in the 

Future.

Recall the example from the previous lecture of data collected from observing a falling object acted 

upon by gravity.  The average acceleration was obtained from the data as   Xa\=9.8 m/s2.  Suppose 

at time t1 = 0 s  you release an object from rest which means that v1 = 0 m ê s.  What is the 

velocity v2  of the  object after t 2 = 4.5 s have elapsed so Dt=(t2 - t1L = H4.5 s 0 s) = 4.5 s?  

(What this really means is "what is the velocity at 4.5 Sec?")

The answer is obtained from equation (2) and thus 

v2 = v1 + Xa\ Dt = 0 m ê s + 9.8 m ë s2 µ H4.5 s - 0 sL = 44.1 m ê s

0 + 9.8 * H4.5 - 0L

44.1

So the velocity of the object is 44.1 m/s after a time 4.5 s has elapsed. 

Unit Cancellation:

Notice the seconds units in time t canceled one of the seconds units in the m/s2  to give the units of 

velocity m/s. Units are useful

in checking to see if your calculation is correct.  The units in all terms of the equation should agree 

with each other.
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3. Kinematic Relations rev.nb  5



The Third Kinematic Equation:

There is an additional equation for the average velocity Xv\ which is different from equation (1) and 

this new equation only applied in the case where the acceleration is constant (which is true most of 

the time in this course).  Suppose the velocity changes from v1 to  v 2  over the time Dt then the 

average velocity Xv\ can be calculated using

(3)Xv\ =
v1 + v2

2

which is a really simple formula and it is not very hard to prove.  If the acceleration is constant then 

the slope of the velocity versus time graph is a straight line and we use this fact in the proof of 

equation (3).   But first let us try out equation (3) in a specific case to see if it indeed works.   

Example:  Suppose we use the same data given in the last lecture for the falling object  (the first 

column is

the elapsed time and the second column are the corresponding velocities.)

vdata =

0 0
1 9.8
2 19.6
3 29.4
4 39.2
5 49
6 58.8

;

ListPlot@vdata, PlotStyle Ø PointSize@0.02D, AxesLabel Ø 8"time HsecL", "velocity HmêsL"<D

1 2 3 4 5 6
time HsecL

10

20

30

40

50

60
velocity HmêsL
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It is reasonable to interpolate the data between the data points so we get

ListPlot@vdata, PlotStyle Ø PointSize@0.02D,
AxesLabel Ø 8"time HsecL", "velocity HmêsL"<, PlotJoined -> TrueD

1 2 3 4 5 6
time HsecL

10

20

30

40

50

60
velocity HmêsL

Again to be concrete suppose we are interested in the average Xv\  from t 1 = 2 sec  where 

v 1 = 19.6 m ê s   to  t 2 = 5 sec   where v 2 = 49 m ê s.

Using equation (3) we get the average velocity  as

Xv\ =
19.6 + 49

2

34.3

This is the same numerical value as obtained from equation (1) since we also happen to have the 
position versus time data

time HsecL 0 1 2 3 4 5 6
Position y HmetersL 0 4.9 19.6 44.1 78.4 122.5 176.4

 so when t 1 = 2 sec  where y1 = 19.6 m   and   t 2 = 5 sec   where y 2 = 122.5 m.  Applying 
equation (1) to y motion you get

Xv\ =
y2 - y1

Dt

Xv\ =
122.5 - 19.6

5 - 2

34.3

Perhaps remarkably we got the same numerical answer for Xv\=34.3 m/s.  In this case, we have 

position y versus time data but you might

NOT have this data available and yet you might like to be able to calculate the average velocity.  

 | 
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Proof of the Third Kinematic Equation:  

You can skip this proof on the first reading. 

Take the velocity versus time graph above and divide the interval from  t 1 = 2 sec  to  t 2 = 5 sec  

into N=30 sub-intervals 

each having a width 0.2 seconds thus

1 2 3 4 5 6
time HsecL
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60
velocity HmêsL

More generally the interval Dt=t 2-t 1  can be divided into N sub-interval each having width h given 
by 

h =
t 2 - t 1

N
or N =

Dt

h

(By the way, the larger N, the more accurate the calculation below becomes.)

The time of each sub-interval is t1+ n ä h  where n=0, 1, 2, ..., N   and   t1+ N ä h = t2  which you 

can get from the equation

just above.  The velocity at each sub-interval is v[t1+ n h].  The average velocity Xv\ is then 

Xv\ =
v@t1D + v@t1 + hD + v@t1 + 2 hD + v@t1 + 3 hD + ... + v@t1 + N hD

N

Aside:  If you want to calculate the average height of a person in this classroom then you would 

add up all the person's heights

and divide by the number of people.  A similar argument gives the average velocity in the above 

equation.  You add up the velocities of each sub-interval and then divide by the number N of sub-

intervals.  But using N= Dt/h the above equation becomes 
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Aside:  If you want to calculate the average height of a person in this classroom then you would 

add up all the person's heights

and divide by the number of people.  A similar argument gives the average velocity in the above 

equation.  You add up the velocities of each sub-interval and then divide by the number N of sub-

intervals.  But using N= Dt/h the above equation becomes 

Xv\ =
v@t1D + v@t1 + hD + v@t1 + 2 hD + v@t1 + 3 hD + ... + v@t1 + N hD

HDt ê hL

or after a little algebra

Xv\ =
Hv@t1D + v@t1 + hD + v@t1 + 2 hD + v@t1 + 3 hD + ... + v@t1 + N hDL * h

Dt ê hL

and one more step yields

Xv\ =
v@t1D * h + v@t1 + hD * h + v@t1 + 2 hD * h + v@t1 + 3 hD * h + ... + v@t1 + N hD * h

Dt

The secret of the third kinematic equation is to interpret the NUMERATOR of above equation as 

the AREA indicated below bounded by the dark lines:
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time HsecL
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The area indicated above is just the AREA of a rectangle having area = Dt ä v1  PLUS the area of a 

triangle = 12 ä Dt ä Hv2 - v1L  

1 2 3 4 5 6
time HsecL

10

20

30

40

50

60
velocity HmêsL

The sum of the area of the triangle plus rectangle is

Total Area = Dtäv1 +
1

2
ä Dt ä Hv2 - v1L =

Dt

2
äHv1 + v2L

Using the Total Area in the numerator of the equation for Xv\ yields

Xv\ =

Dt
2
äHv1 + v2L

Dt

The Dt in the numerator and the Dt denominator cancel and this equation reduces the third 
kinematic equation

Xv\ =
v1 + v2

2

 | 
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The Fourth Kinematic Equation

Another kind of prediction problem you might want to solve is the following.  Suppose the falling 

mass acted on by gravity

 is at the origin of coordinates initially.  That is y1 = 0 meters  at t1 = 0 Sec.  The object is then 

released from rest that is v1 = 0 m/s.  

 How  far will the object fall in Dt=8.5 seconds?  

 By the way, it is known that objects fall under the force of gravity always with an acceleration of 

a=9.8 m/s2  on Earth if you

 neglect air resistance.  This is true regardless of the objects mass.  Since this acceleration a on 

Earth  is so common in physics

 it is given a special name g=9.8  m/s2 .

 The Longer Solution to this Problem:  We know the initial velocity v1 = 0 m/s , the acceleration 

a=9.8 m/s2, and the time of travel

 Dt=8.5 Sec, equation #2 allows us to get the velocity v2 at t2 = 8.5 Sec via

v2 = v1 + Xa\ Dt = 0 + 9.8 m ê s * 8.5 s

0 + 9.8 * 8.5

83.3

So the velocity is v2 = 83.3 m/s when Dt=8.5 Sec.   Note that Dt=(t2-t1) = t2  since t1=0. 

However, we still do not know how far the mass has fallen.  However, we can calculate the 

average velocity using

equation #3 that is 

Xv\ =
v1 + v2

2
=

0 + 83.3 m ê s

2
= 41.65 m ê s

0 + 83.3

2

41.65
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Now with equation (1) we may final out how far the mass has fallen 

y2 = y1 + Xv\ ä Dt = 0 m + 41.65
m

s
ä 8.5 s = 354 m

0 + 41.65 * 8.5

354.025

So the prediction is the object will have fallen 354 m after 8.5 Sec.  

This solution is a bit round about but there is a more direct way to proceed.

More Direct Solution to this Problem:  The fourth kinematic equation is

(4)y2 = y1 + v1 Dt +
1

2
a t2

This is has not yet been derived but let us use it first to see its value.  By the way, often the motion 

is in the x direction

but here it is in the y direction.  

We know that y1 = 0 meters  at t1 = 0 Sec and the object is released from rest (that is v1 = 0 m/s) 

and also 

the time of fall is Dt=8.5 seconds.  Also since we are dealing with gravity a=g=9.8 m/s2.  Using this 

information in kinematic equation #4 we get

y2 = 0 m + H0 m ê s ä 8.5 sec L +
1

2
9.8 m ë s2 * H8.5 sL2

y2 = H0 * 8.5L + H1 ê 2L * 9.8 * 8.52

354.025

So equation #4 predicts the mass will have fallen 354 m which is the same answer as obtained by 
the roundabout method.  

 | 
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Proof the Fourth Kinematic Equation

 The proof is quite easy and we will do it for motion in the x direction.  Basically we repeat the steps 

used above in the

round about method.  But if you do these steps once and for all, you can save time in problem 

solving.

Start with equation #1 written a

x2 = x1 + Xv\ Dt

Use the kinematic equation #3 in the form

Xv\ =
v1 + v2

2

to eliminate the average velocity   Xv\  obtaining 

x2 = x1 +
v1 + v2

2
Dt

Next use equation #2 to eliminate 

v2 = v1 + Xa\ Dt

to eliminate v2  and obtain

x2 = x1 +
v1 + v1 + Xa\ Dt

2
Dt = x1 +

2 v1 + Xa\ Dt

2
Dt

and after a very little amount of algebra we finally get

(5)x2 = x1 + v1 Dt +
1

2
Xa\ Dt2

which is the Fourth Kinematic Equation.  This equation can be used to predict where an object is at 

a given time 

if you know the initial position, the initial velocity of the object as well at the average acceleration.  

 | 
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The Fifth Kinematic Equation

One additional equation can be obtained from equation (1) with Dx= x2 - x1  written as

Dx = Xv\ Dt

and using equation (3) for the average velocity 

Xv\ =
v1 + v2

2

and from equation (2) you can solve for the Dt

Dt =
v2 - v1

Xa\

After substitution we get

Dx =
v1 + v2

2

v2 - v1

Xa\

and with a little rearrangement (algebra)

2 Xa\ Dx = Hv1 + v2L Hv2 - v1L

The binomial on the right hand side can be simplified by multiplied and after a cancellation you get

the fifth kinematic equation

2 Xa\ Dx = v22 -v12

which is usually written in the form

v22 = v12 + 2 Xa\ Dx

 | 
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An Example:  Using the 5th Kinematic Equation

Suppose you have a falling object and Xa\= 9.8 m/s2 that you release from rest so v1 = m ê s and

you want to know how fast the object is falling after a distance Dx=7 m.  Solve the 5th kinematic 

equation 

for v2 and write

v22 = v12 + 2 Xa\ Dx

and given what we know this becomes 

v22 = H0 m ê sL2 + 2ä9.8 m ê s ä 7 m

v2 = 2 * 9.8 * 7

11.7132

So the object is moving at 11.7 m/s when it has fallen a distance Dx=7 m.

Galileo's Leaning Tower of Pisa Experiment on the Moon by Astronaut David Scott

Historical Reference

Some doubt that Galileo ever dropped anything off the tower itself. However, a close examination 
of his writings reveals that he described the effects that can only be found if he performed the 
experiments himself. He described that it was almost impossible to release a heavy and a light ball 
simultaneously, that he always released the light ball first. Then, as the heavy object fell a little 
faster, it would catch up and eventually both will land at the same time. The structure of Pisa tower 
is such that one needs to lean forward to drop something. It turns out that muscle fatigue makes 
one release a light object first. . Basically, you tend to release the lighter object first. Galileo was 
aware of this and also has some idea that air resistance might be playing a role. He observed that 
the lighter ball always seemed to get a tiny head start, but that the heavier ball "caught up" to the 
lighter one. The reference: I.Bernard Cohen "The birth of a new physics".

David Scott performs Galileo's experiment by dropping a hammer and a feather on the Moon in a 
video  at the web location below.  Note the hammer and feather both fall much slower than you 
might expect for an object dropped on Earth.  You can past it into your web browser.  But before 
doing that, try clicking on the hyperlink below  in blue which should take you to NASA.  The longer 
version of the
David Scott video is the recommended one as it has some out takes in it.

http://nssdc.gsfc.nasa.gov/planetary/lunar/apollo_15_feather _drop.html

©  Rodney L. Varley (2010).
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