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We investigate generalized measurements, based on positive-operator-valued measures, and von Neumann
measurements for the unambiguous discrimination of two mixed quantum states that occur with given prior
probabilities. In particular, we derive the conditions under which the failure probability of the measurement can
reach its absolute lower bound, proportional to the fidelity of the states. The optimum measurement strategy
yielding the fidelity bound of the failure probability is explicitly determined for a number of cases. One
example involves two density operators of rashkhat jointly span a @-dimensional Hilbert space and are
related in a special way. We also present an application of the results to the problem of unambiguous quantum
state comparison, generalizing the optimum strategy for arbitrary prior probabilities of the states.
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Many applications in quantum communication and quan+espectively, can be formally described by three positive op-
tum cryptography are based on transmitting quantum syseratorsIl, with =2 I1,=I, wherel is the identity. These
tems that, with given prior probabilities, are prepared in onedetection operators are defined in such a way th&lTy)
from a set of known mutually nonorthogonal states. Sincewith k=1, 2 is the probability that a system prepared in a
perfect discrimination between nonorthogonal quantunstatep is inferred to be in the state,, while Tr(plly) is the
states is impossible, measurement strategies for state digrobability that the measurement fails to give a definite an-
crimination have been developed that are optimized with reswer. When all detection operators are projectors, the mea-
spect to various criterifil]. Here we consider unambiguous surement is a von Neumann measurement, otherwise it is a
discrimination, requiring that the outcome of the measuregeneralized measurement based on a positive operator-
ment be error-free. For two mixed quantum states unambiguzalued measuréPOVM). From the detection operatofd,

ous discrimination is possible with a finite probability of schemes for realizing the measurement can be obtained
success if the supporf&] of their density operators are not [12,13.

identical. When the measurement fails, it returns an incon- |t is our aim to investigate the optimum measurement
clusive answer but never an error. In the optimal measurestrategy that minimizes the total failure probability
ment strategy the failure probability is minimum.

The problem of unambiguously discriminating mixed Q= mTr(psllp) + 7, Tr(pollp). (1)
quantum states arises, for instance, when given pure states _ . . .
undergo a specified decoherence process during transmissibiP™ the refation between the arithmetic and the geometric
through a quantum channel, or when the quantum system [§€an and from the Cauchy-Schwarz_inequalito,14,
known to be in a pure state that has to be assigned to h __follows that  Q=2\nm 7, Tr(pyllo) Tr(pallo)
particular set out of a number of given sets of pure states= 271 7:Max,[Tr(U\p:Ilo\p,)|, whereU describes an arbi-
with each set corresponding to a mixed state. While for twdrary unitary transformation. The failure probability takes its
pure states the minimum failure probability has long sinceabsolute minimum when the two equality signs hold. This is
been knowr{3,4], the study of unambiguous discrimination true if and only if both the relationsz;Tr(p;I1o)
among mixed states, or sets of pure states, respectively,7,Tr(p,llo) andUyp;\TIo~ \po\T1, are fulfilled. From the
started only recently5-11]. A complete solution, determin- first relation we conclude that the number of inconclusive
ing the minimum achievable failure probability for arbitrary results is equally distributed among the two incoming states.
prior probabilities of the states, has been obtained for théfter multiplying the second relation with its Hermitian con-
special cases of discriminating a pure and a mixed §%6  jugate, the two conditions for equality can be combined to
and of two mixed states of rant in a (d+1)-dimensional yield \II(7,p,~ 7:p1)VIIo=0. Since in the POVM formal-
joint Hilbert space[7]. For discriminating two arbitrary ism the detection operators transform a quantum state ac-
mixed states, bounds have been derived for the failure prokeording top— ST, [13], it follows that the total fail-
ability [7], in terms of the fidelity of the states. In this paper ure probability is smallest when in case of failure the two
we perform a more detailed analysis, investigating the coneensity operators are transformed into states that are identical
ditions under which the lowest bound, proportional to theafter normalization and therefore cannot be further discrimi-
fidelity, can be reached, and deriving also the von Neumannated.
measurements for unambiguous discrimination. We now recall that unambiguous discrimination of two

We start by recalling that a measurement for distinguishstates leads to the requirementl,=p,I1,=0 [1]. Substitut-
ing two quantum states, characterized by the density operang I1,=1-11,-1II, into the inequality for the failure prob-
tors p; and p, and the prior probabilitiesy; and 7,=1-7, ability Q [10], given above, we arrive at
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Q = 2\ mymMaxy|Tr(Uvpypo)| = 2V maF, (2 _ dy

o o _ _ Py =Py +Py, — Py =2 (], (1)
whereF=Tr[(Vp,p1Vp,) 2] is the fidelity[14]. Using a dif- j=0

ferent method, it has been found already previously by Ru-

dolph et al.[7] that wherep,[r;)=0. The stateg[r;)} form an orthonormal basis
in the d;-dimensional subspace &f;, that is spanned by all
e . m_1 states that are orthogonal &y, whered;=dy;+d;, —d;. The
Q= 20mmF=Qo i F =y 7 SF (3)  identity is then given by

s 2 i _
i a5 OErISe, |=Py, +Py= Py, +Py+ Py= P+ PPy (12
with 7min(7max) denoting the smalleflargen of the prior )
probabilities. Here, in addition, we obtained the necessar%‘tere the operatdP,=1-P, , ~Py projects onto the subspace
and sufficient conditions that the detection operators have t&/2 SPanned by those states that are orthogonal to Beth

fulfill in order to reach the fidelity boun€,. They can be and Py, implying thatp,P,=0. Instead of decomposing the
summarized as eigenstates op,, we might as well have started frofs,,

=Py|sy+|s,), obtaining instead of Eq(12) the alternative
MMy=1-1I,-1,=0, II;=0, II,=0, (4)  decomposition

=P, +P,=P, +P,+P,=P,+P,+P], (13
le2 - pZHl - 01 (5) 21 1 21 2 1 2 2 1
where the projectors are defined analogously.
_ _ - Now we can specify the general structure of all detection
Tr(pillg) = 941 = Tr(pI1) ] = v F, 6 . .
mTtpallo) = 7l (PlT)]=\mumo © operators,I1; andIl,, that describe unambiguous discrimi-
nation, i.e., satisfy Eqg4) and (5). We write

1 r(pollg) = 71 = Tr(p,IT) ] =\ mF (7) g g
11 11
In the following we investigate the conditions under lez FAPINCHE 2 aii [, (14)
which detection operators exist that satisfy E@$—(7). For =1 SR ij=1 J !

this purpose we use the spectral representations
where 0< o] <1 and|v{)==;u;|v;) with {u;} being a unitary

d d matrix. We note tha;|v/)v{[=P;, since the eigenstates
pr=2 Xl pa= 2 SwlsXsal, (8)  |v]) form a complete orthonormal basis ;. For repre-
=1 m=1 senting I1, we start from the same decomposition of the

identity, and take into account that none of the eigenstates of

wherer), sy 0, and(r|rw = m=(s| sy Furthermore, we [Ty must be contained in the subspaklg when the failure

introduce the projection operators probability is to be as small as possible. This leads to
d d . o
P1:E|rl><r||! P2: m2:1|3‘n><3‘n|! (9) HZZZE{IF{><F{|+P£: E ﬁ|J|r_|><ﬁ|+| _Plo, (15)
i=1 =

and the non-normalized state$ =P,|r;). We can construct a ) n —

complete orthonormal basighy} in the subspacek,  Where 0=p/<1 and 24 [rf)(rf|=P,. The constantsy; and

spanned by the state vectdPslr,), using the recursion rela- /i aré subject to the constraint thidp=0.

tion [h)=P,lry—=K1h)h|P,ry and determining |hy) Clearly, whenP,=Py=I, and consequently alsB,=Py
Tl i= TATI 21k ki =1, it follows thatIl,;=I1,=0 andIly=1I, yielding a unit fail-

=|hy/|hd| [14]. The dimensionalityly, of Hy; is equal to the  ure probability that makes error-free discrimination impos-

rank of the matrix formed by the elemen(s|P,|r,). Simi-  sible. We therefore require th&; , #0, or P,, # 0, respec-

larly, in the subspacé,, that is spanned by the non- tively, which, because of normalization, is equivalent to

normalized vectorg|')=(I-P,)|r,), we can obtain an ortho-

normal basis {|v;)} of dimension d;,. The respective Tr(P1pp) < Tr(Pyllpz,  Tr(Popy) <Tr(Pyllpy.  (16)

projection operators into the two orthogonal subspaces are  pgefore studying the optimum measurement, let us con-

sider the von Neumann measurements for unambiguous dis-

dy diy S ) e
crimination. If &/ =0 for all j, and 8/ =1 for all i, it follows
Py=2 [hothd, Pr=2 ool (10) _ =, : A _ . .
k=1 i=1 that I1,=0 andIl,=P,+P;. Hencell,=P;, with the failure

probability Qni=m,+ 7,Tr(P1p,). Another von Neumann
wherep,|v;)=0. The operatoP,,=P,+P,, projects onto a measurement is generated wl'tej‘ml for all j, andg =0 for
subspace H,;, of dimension dy+d;,. Noticing that all i, giving I[I;=P;, andII,=P;. ThenIly=Py, with the
Tr[(P1o—P1)p1]=0, we construct the operator failure probability
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Qni = mTr(Papy) + 7, Tr(Pyllpo), (17 The parameter intervals2 in Eq$3) anq (22_) coin.cide
i when TiP;p,)=Tr(P,p;)=F4. This condition is fulfilled,
where the relation TPypy)=1-Tr(Py,p1)=Tr(Pzp1) has ¢ g for density operators of the form=3=L ri|r;Xr;| and
been applied. In this measurement the state is unamblgu_ous)J\é:Eid:lrdesi|, with (r,|s)=b &;, where the corresponding
found to bep, when a detector click occurs in a direction gjgenyalues are identical. The fidelity is then found toFbe
orthogonal to all eigenstates p§. On the other hand, fora — b.

click in a direction orthogonal to botR;, andP,, the state Another simplification arises wheR;; and P, are one-

is determined to b, with certainty, and in the rest of cases dimensional projectorsdy=dy=1. In this case equality
the result is inconclusive. So far we relied on EtR). Based holds in Egs. (23) [15], which implies that F?

on the complementary decomposition of the identity, EQ=Tr(Pop)) Tr(Pyyp2) = Tr(Popy) Tr(Pyp,), where Eq.(16) has
(13), we obtain an alternative pair of von Neumann measurebeen taken into account. Hence again for any two density
ments. These yield the failure probabilitieQy,= 7, operators the necessary conditi@®) is fulfilled for a cer-

+ 7, Tr(Pyp,) and tain range of the ratiay,/ n;. At the lower limit of this range,
i.e., for \n/n=Tr(Pip,)/F, we can write 2,nF

Qnazi = 72T1(P1p2) + 7 Tr(Pypa). (18 = F2I Tr(Pyp,) + 75 Tr(P1py) =Quy, and similarly we find
Obviously Quz =< Qi and Quy; =< Qup- that at the upper limit innzF:QNZH. Thus, ifQ=Q in the

We now return to the optimum measurement. Since thé&ntire range in Eq(22), the complete solution for the opti-
von Neumann measurements can be performed for arbitrafyum measurement is known.

iven parameters, the optimized failure probability certainly " general, in order to find the optimum measurement
gbeys?[he inequality P P y ystrategy that yields the failure probabili9,, we have to

determine the parametetg; and 8; in Egs.(14) and (15
Qopt =< Min{Qny, Qnzy}- (19) that satisfy the necessary and sufficient conditieis(7). In

i " the following we apply this method to a number of special
According to Egs.(6) and (7) the absolute minimum cgges.

of the failure probability,Qo=2\7,7,F, is reached if and First we consider two density operators of ragkn a
only if the two conditions Tip;llo)/F=V7,/7 and  2d-dimensional joint Hilbert space. In such a c#e0 and
FITr(pollo) =7,/ 7y are fulfilled. However, due to the struc- the identity can be alternatively expressed a®,;+P; or |
ture of the operatordl; and II,, the possible values of =P, +P.. which means thaP.i=P,. P.;=P. andP.=P
Tr(pdTo)=1-Tr(pd1y), for k=1, 2, have a lower bound. In Welétartzyfrorn Eqs(8) with dllldzi,d aZ\Hnd assume thafé)
particular, =(Ir)+)/v2, and [v)=(|r)=[r)/v2(=1,...,d). Then
Tr(pyI1g) = 1 - Tr(Py, py) = Tr(Popy), (20 Wwe obtainF=X;\r;s/2 _and T(Plpz):Tr(P?pl):1/2. IF is
important to note that in general there exist sets of eigenval-

- ues{r;} and{s} whereF?<1/4 and the necessary condition,

Tr(pallo) = Tr(Pypo) = Tr(Pip2) = Tr(P1pp), (21 Eq. (22), cannot be fulfilled. In the following, however, we
where in the first equation the equality sign holds when restrict ourselves to the"_speual case thats for i
reached wheiB/ =1 in Eq.(15). Therefore we obtain that the the_lower boundQ, to be achievable then reads \P/

condition <,/ 7, <\2. Further, we find the solutions; =a &; and
Bij=B6;(i,j=1,...,d), where a=2-\2n,/7, and B=2

Tr(Pypy) _ m_ _ F (22) —\2m/ n,. Il has two eigenvalued,,=0 and\;=2-a- 3,

F o Ny Tr(Ppy)’ each with ad-fold degeneracy. Thus the optimuy, is al-

ways an operator of rantk Note that 22—-2<\,<1 in the
whole intervalF<+#;/ 7,<1/F. Hence in this parameter

, . . interval the optimum detection operators yielding the lower
The interval specified by Eq22) is not empty only when 5 \nq Qo are I1,=aP,, andI1,=8P,,. At the upper and

) . )
Tr(PopyTr(Pypp) <F* For two density operators that vio- |5uer fimits of the interval the measurement turns into the

late this inequality, the failure probabilitfy cannot be 54 Neumann measurements that give the failure probabili-

achieved for any vgl_ues of the prior probabilities of thetieSQNm:QNZ and Qnz=Qnz1, respectively. Since in our ex-
states, and the conditiori€) and(7) are then of no help for ample T(P,py)=Tr(Pyp,) =F2, we find thatQu, = 7, + 7,F2

determining the optimum measurement. Moreover, our result Qnz= 7+ 71F2 Thus we derived a measurement strat-

shows that in general the lower bour@, can only be g4y that yields the equality sign in EE3) for two mixed
reached in an interval of the ratig,/ , that is smaller than stgaxzes. y . y s ®

the interval given in Eq.(3), sir_1ce TtP,p,)/F=F and In our next examples we focus on the cakg=dy=1.
F/Tr(Pypp) <1/F. The latter relations follow from the gen- gijrst we assume that the density operators given in(8y.

is necessaryi.e., the fidelity boundQ=Q, can only be
reached in part or in the whole of this interval.

eral inequalities have arbitrary ranksl; and d,, and that(r;|s,)=a & 161
Tr(Pop) Tr(Pillp) = F2,  Tr(Pipp) Tr(Py|p;) = F2 with [a]<1. This vyields F=ysiria, Tr(Pypy)=F?/s,,
(23) Tr(P1p,)=F2?/r, and d;,=dy=1. For the parameter range
specified in Eq(22), we obtain the optimum detection op-
that can be readily inferred from Eq®), (17), and(18). erators
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5.0 duced as quantum state filterinfp,17]. In this case
m={1- ) o2t E Ir(ry|, Tr(Pyp,)=F? and T(P,p,)=|r}|% In the parameter interval
’71r1 (1-1aP)* = given by Eq.(22) the optimum detection operators take the
form
d
[ F\ il &
1 =<1— ) EI Sl
2 ms) L -|a?? Hl:(l_ /@F)L@ﬂz,
* m )1l

where we introduced,;)=|r,)—als;) and[r,)=
This solution can be applied to the problem of quantum 2\ |17 \(F

state comparisofil6], where two identical quantum objects I, = (1 _ ﬂM) [F(r|

are each prepared either in the statg, or in the stateis), 7 F /1=

and where we wish to determine unambiguously whether the

states are equal or different. The task amounts to distinguistand the previous solution for the minimum failure probabil-

ing the two-particle states p;=(1/2)(|¢1,1)(¢p1,¢a| ity in optimum unambiguous quantum state filteriifg6] is

+[ 2, )2, o)) and p2=(112)(|¢h1, Y2X(h1, 5| readily regained.

+|iho, )2, Yr]), where F=[(¢1|)|. Upon determining In summary, we performed a detailed analysis of the

the eigenstates, we find that the structur@péndp, corre-  probabilistic measurement for unambiguous discrimination

sponds to the one treated in the above special example, wittetween two arbitrary mixed quantum states. We derived

r,=s,=(1+F?)/2 and|a|=2F/(1+F?). The minimum failure general analytical relations that depend on five quantities

probability in unambiguous quantum state comparison folcharacterizing the mutual relationship of the density opera-

+ P,

lows to be tors of the states. These quantities are the expressions
Tr(P1py) and TAPyp,), as well as T(P,p,) and T(Pyp;)
o E if 4 [ min 2F and, most importantly, the fidelify. We also showed that the
V2 Dmax 1 +F? method developed in this paper can be used to find complete
Qopt= o2 1+F2 analytical solutions that describe the optimum measurement
max] 4 £ + Drmin > otherwise. for special cases.
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