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We investigate generalized measurements, based on positive-operator-valued measures, and von Neumann
measurements for the unambiguous discrimination of two mixed quantum states that occur with given prior
probabilities. In particular, we derive the conditions under which the failure probability of the measurement can
reach its absolute lower bound, proportional to the fidelity of the states. The optimum measurement strategy
yielding the fidelity bound of the failure probability is explicitly determined for a number of cases. One
example involves two density operators of rankd that jointly span a 2d-dimensional Hilbert space and are
related in a special way. We also present an application of the results to the problem of unambiguous quantum
state comparison, generalizing the optimum strategy for arbitrary prior probabilities of the states.

DOI: 10.1103/PhysRevA.71.050301 PACS numberssd: 03.67.Hk, 03.65.Ta, 42.50.2p

Many applications in quantum communication and quan-
tum cryptography are based on transmitting quantum sys-
tems that, with given prior probabilities, are prepared in one
from a set of known mutually nonorthogonal states. Since
perfect discrimination between nonorthogonal quantum
states is impossible, measurement strategies for state dis-
crimination have been developed that are optimized with re-
spect to various criteriaf1g. Here we consider unambiguous
discrimination, requiring that the outcome of the measure-
ment be error-free. For two mixed quantum states unambigu-
ous discrimination is possible with a finite probability of
success if the supportsf2g of their density operators are not
identical. When the measurement fails, it returns an incon-
clusive answer but never an error. In the optimal measure-
ment strategy the failure probability is minimum.

The problem of unambiguously discriminating mixed
quantum states arises, for instance, when given pure states
undergo a specified decoherence process during transmission
through a quantum channel, or when the quantum system is
known to be in a pure state that has to be assigned to a
particular set out of a number of given sets of pure states,
with each set corresponding to a mixed state. While for two
pure states the minimum failure probability has long since
been knownf3,4g, the study of unambiguous discrimination
among mixed states, or sets of pure states, respectively,
started only recentlyf5–11g. A complete solution, determin-
ing the minimum achievable failure probability for arbitrary
prior probabilities of the states, has been obtained for the
special cases of discriminating a pure and a mixed statef5,6g,
and of two mixed states of rankd in a sd+1d-dimensional
joint Hilbert spacef7g. For discriminating two arbitrary
mixed states, bounds have been derived for the failure prob-
ability f7g, in terms of the fidelity of the states. In this paper
we perform a more detailed analysis, investigating the con-
ditions under which the lowest bound, proportional to the
fidelity, can be reached, and deriving also the von Neumann
measurements for unambiguous discrimination.

We start by recalling that a measurement for distinguish-
ing two quantum states, characterized by the density opera-
tors r1 andr2 and the prior probabilitiesh1 andh2=1−h1,

respectively, can be formally described by three positive op-
eratorsPk with ok=0

2 Pk= I, where I is the identity. These
detection operators are defined in such a way that TrsrPkd
with k=1, 2 is the probability that a system prepared in a
stater is inferred to be in the staterk, while TrsrP0d is the
probability that the measurement fails to give a definite an-
swer. When all detection operators are projectors, the mea-
surement is a von Neumann measurement, otherwise it is a
generalized measurement based on a positive operator-
valued measuresPOVMd. From the detection operatorsPk
schemes for realizing the measurement can be obtained
f12,13g.

It is our aim to investigate the optimum measurement
strategy that minimizes the total failure probability

Q = h1Trsr1P0d + h2Trsr2P0d. s1d

From the relation between the arithmetic and the geometric
mean and from the Cauchy-Schwarz inequalityf10,14g,
it follows that Qù2Îh1h2Trsr1P0dTrsr2P0d
ù2Îh1h2MaxUuTrsUÎr1P0

Îr2du, whereU describes an arbi-
trary unitary transformation. The failure probability takes its
absolute minimum when the two equality signs hold. This is
true if and only if both the relationsh1Trsr1P0d
=h2Trsr2P0d andUÎr1

ÎP0,Îr2
ÎP0 are fulfilled. From the

first relation we conclude that the number of inconclusive
results is equally distributed among the two incoming states.
After multiplying the second relation with its Hermitian con-
jugate, the two conditions for equality can be combined to
yield ÎP0sh2r2−h1r1dÎP0=0. Since in the POVM formal-
ism the detection operators transform a quantum state ac-
cording tor→ok

ÎPkrÎPk f13g, it follows that the total fail-
ure probability is smallest when in case of failure the two
density operators are transformed into states that are identical
after normalization and therefore cannot be further discrimi-
nated.

We now recall that unambiguous discrimination of two
states leads to the requirementr1P2=r2P1=0 f1g. Substitut-
ing P0= I −P1−P2 into the inequality for the failure prob-
ability Q f10g, given above, we arrive at
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Q ù 2Îh1h2MaxUuTrsUÎr1
Îr2du = 2Îh1h2F, s2d

whereF=TrfsÎr2r1
Îr2d1/2g is the fidelity f14g. Using a dif-

ferent method, it has been found already previously by Ru-
dolph et al. f7g that

Q ù 52Îh1h2F = Q0 if F øÎh1

h2
ø

1

F

hmin + hmaxF
2 otherwise,

6 s3d

with hminshmaxd denoting the smallerslargerd of the prior
probabilities. Here, in addition, we obtained the necessary
and sufficient conditions that the detection operators have to
fulfill in order to reach the fidelity boundQ0. They can be
summarized as

P0 = I − P1 − P2 ù 0, P1 ù 0, P2 ù 0, s4d

r1P2 = r2P1 = 0, s5d

h1Trsr1P0d = h1f1 − Trsr1P1dg = Îh1h2F, s6d

h2Trsr2P0d = h2f1 − Trsr2P2dg = Îh1h2F. s7d

In the following we investigate the conditions under
which detection operators exist that satisfy Eqs.s4d–s7d. For
this purpose we use the spectral representations

r1 = o
l=1

d1

r lur llkr lu, r2 = o
m=1

d2

smusmlksmu, s8d

wherer l, smÞ0, andkr l u rml=dl,m=ksl usml. Furthermore, we
introduce the projection operators

P1 = o
l=1

d1

ur llkr lu, P2 = o
m=1

d2

usmlksmu, s9d

and the non-normalized statesur l
il=P2ur ll. We can construct a

complete orthonormal basishuhklj in the subspaceH1i

spanned by the state vectorsP2ur ll, using the recursion rela-

tion uh̃kl=P2urkl−oi=1
k−1uhilkhiuP2urkl and determining uhkl

= uh̃kl / ih̃ki f14g. The dimensionalityd1i of H1i is equal to the
rank of the matrix formed by the elementskr luP2urnl. Simi-
larly, in the subspaceH1' that is spanned by the non-
normalized vectorsur l

'l=sI −P2dur ll, we can obtain an ortho-
normal basis huvilj of dimension d1'. The respective
projection operators into the two orthogonal subspaces are

P1i = o
k=1

d1i

uhklkhku, P1' = o
i=1

d1'

uvilkviu, s10d

wherer2uvil=0. The operatorP10=P1i+P1' projects onto a
subspace H10 of dimension d1i+d1'. Noticing that
TrfsP10−P1dr1g=0, we construct the operator

P̄1 = P1i + P1' − P1 = o
j=0

d̄1

ur̄ jlkr̄ ju, s11d

wherer1ur̄ jl=0. The stateshur̄ jlj form an orthonormal basis

in the d̄1-dimensional subspace ofH10 that is spanned by all

states that are orthogonal toP1, whered̄1=d1i+d1'−d1. The
identity is then given by

I = P1' + P2 = P1' + P1i + P28 = P1 + P̄1 + P28. s12d

Here the operatorP28= I −P1'−P1i projects onto the subspace
H28 spanned by those states that are orthogonal to bothP1'

and P1i, implying thatr1P28=0. Instead of decomposing the
eigenstates ofr1, we might as well have started fromusml
=P1usml+ usm

'l, obtaining instead of Eq.s12d the alternative
decomposition

I = P2' + P1 = P2' + P2 + P18 = P2 + P̄2 + P18, s13d

where the projectors are defined analogously.
Now we can specify the general structure of all detection

operators,P1 and P2, that describe unambiguous discrimi-
nation, i.e., satisfy Eqs.s4d and s5d. We write

P1 = o
j=1

d1'

a j8uv j8lkv j8u = o
i,j=1

d1'

ai j uvilkv ju, s14d

where 0øa j8ø1 anduv j8l=oiuji uvil with hujij being a unitary
matrix. We note thato juv j8lkv j8u=P1' since the eigenstates
uv j8l form a complete orthonormal basis inH1'. For repre-
senting P2 we start from the same decomposition of the
identity, and take into account that none of the eigenstates of
P0 must be contained in the subspaceH28 when the failure
probability is to be as small as possible. This leads to

P2 = o
i=1

d̄1

bi8ur̄ i8lkr̄ i8u + P28 = o
i,j=1

d̄1

bi j ur̄ ilkr̄ ju + I − P10, s15d

where 0øbi8ø1 andoi=1
d̄1 ur̄ i8lkr̄ i8u= P̄1. The constantsai j and

bi j are subject to the constraint thatP0ù0.
Clearly, whenP1=P1i= I, and consequently alsoP2=P2i

= I, it follows thatP1=P2=0 andP0= I, yielding a unit fail-
ure probability that makes error-free discrimination impos-
sible. We therefore require thatP1'Þ0, or P2'Þ0, respec-
tively, which, because of normalization, is equivalent to

TrsP1r2d , TrsP1ir2, TrsP2r1d , TrsP2ir1. s16d

Before studying the optimum measurement, let us con-
sider the von Neumann measurements for unambiguous dis-
crimination. If a j8=0 for all j , andbi8=1 for all i, it follows

that P1=0 andP2= P̄1+P28. HenceP0=P1, with the failure
probability QN1=h1+h2TrsP1r2d. Another von Neumann
measurement is generated whena j8=1 for all j , andbi8=0 for
all i, giving P1=P1' and P2=P28. Then P0=P1i, with the
failure probability
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QN1 = h1TrsP2r1d + h2TrsP1ir2d, s17d

where the relation TrsP1ir1d=1−TrsP1'r1d=TrsP2r1d has
been applied. In this measurement the state is unambiguously
found to ber1 when a detector click occurs in a direction
orthogonal to all eigenstates ofr2. On the other hand, for a
click in a direction orthogonal to bothP1i andP1', the state
is determined to ber2 with certainty, and in the rest of cases
the result is inconclusive. So far we relied on Eq.s12d. Based
on the complementary decomposition of the identity, Eq.
s13d, we obtain an alternative pair of von Neumann measure-
ments. These yield the failure probabilitiesQN2=h2
+h1TrsP2r1d and

QN2i = h2TrsP1r2d + h1TrsP2ir1d. s18d

ObviouslyQN2i øQN1 andQN1i øQN2.
We now return to the optimum measurement. Since the

von Neumann measurements can be performed for arbitrary
given parameters, the optimized failure probability certainly
obeys the inequality

Qopt ø MinhQN1i,QN2ij. s19d

According to Eqs. s6d and s7d the absolute minimum
of the failure probability,Q0=2Îh1h2F, is reached if and
only if the two conditions Trsr1P0d /F=Îh2/h1 and
F /Trsr2P0d=Îh2/h1 are fulfilled. However, due to the struc-
ture of the operatorsP1 and P2, the possible values of
TrsrkP0d=1−TrsrkPkd, for k=1, 2, have a lower bound. In
particular,

Trsr1P0d ù 1 − TrsP1'r1d = TrsP2r1d, s20d

Trsr2P0d ù TrsP1ir2d − TrsP̄1r2d = TrsP1r2d, s21d

where in the first equation the equality sign holds whena j8
=1 in Eq. s14d, and in the second equation the equality is
reached whenbi8=1 in Eq.s15d. Therefore we obtain that the
condition,

TrsP2r1d
F

øÎh2

h1
ø

F

TrsP1r2d
, s22d

is necessary, i.e., the fidelity bound,Q=Q0, can only be
reached in part or in the whole of this interval.

The interval specified by Eq.s22d is not empty only when
TrsP2r1dTrsP1r2døF2. For two density operators that vio-
late this inequality, the failure probabilityQ0 cannot be
achieved for any values of the prior probabilities of the
states, and the conditionss6d ands7d are then of no help for
determining the optimum measurement. Moreover, our result
shows that in general the lower boundQ0 can only be
reached in an interval of the ratioh2/h1 that is smaller than
the interval given in Eq.s3d, since TrsP2r1d /FùF and
F /TrsP1r2dø1/F. The latter relations follow from the gen-
eral inequalities

TrsP2r1dTrsP1ir2d ù F2, TrsP1r2dTrsP2ir1d ù F2

s23d

that can be readily inferred from Eqs.s2d, s17d, ands18d.

The parameter intervals in Eqs.s3d and s22d coincide
when TrsP1r2d=TrsP2r1d=F2. This condition is fulfilled,
e.g., for density operators of the formr1=oi=1

d riur ilkr iu and
r2=oi=1

d riusilksiu, with kr i usjl=b di j , where the corresponding
eigenvalues are identical. The fidelity is then found to beF
= ubu.

Another simplification arises whenP1i and P2i are one-
dimensional projectors,d1i=d2i=1. In this case equality
holds in Eqs. s23d f15g, which implies that F2

=TrsP2r1dTrsP1ir2dùTrsP2r1dTrsP1r2d, where Eq.s16d has
been taken into account. Hence again for any two density
operators the necessary conditions22d is fulfilled for a cer-
tain range of the ratioh2/h1. At the lower limit of this range,
i.e., for Îh2/h1=TrsP1r2d /F, we can write 2Îh1h2F
=h1F

2/TrsP1r2d+h2TrsP1r2d=QN1i, and similarly we find
that at the upper limit 2Îh1h2F=QN2i. Thus, ifQ=Q0 in the
entire range in Eq.s22d, the complete solution for the opti-
mum measurement is known.

In general, in order to find the optimum measurement
strategy that yields the failure probabilityQ0, we have to
determine the parametersai j and bi j in Eqs. s14d and s15d
that satisfy the necessary and sufficient conditionss4d–s7d. In
the following we apply this method to a number of special
cases.

First we consider two density operators of rankd in a
2d-dimensional joint Hilbert space. In such a caseP28=0 and
the identity can be alternatively expressed asI =P1+ P̄1 or I
=P1'+P2, which means thatP1i=P2, P2i=P1 and P̄1=P2'.
We start from Eqs.s8d with d1=d2=d and assume thatusil
=sur il+ ur̄ ild /Î2, and uvil=sur il− ur̄ ild /Î2 si =1,… ,dd. Then
we obtainF=oi

Îr isi /2 and TrsP1r2d=TrsP2r1d=1/2. It is
important to note that in general there exist sets of eigenval-
ueshr ij andhsij whereF2,1/4 and the necessary condition,
Eq. s22d, cannot be fulfilled. In the following, however, we
restrict ourselves to the special case thatr i =si for i
=1,… ,d, for which F=1/Î2. The necessary condition for
the lower boundQ0 to be achievable then reads 1/Î2
øÎh2/h1øÎ2. Further, we find the solutionsai j =a di j and
bi j =b di jsi , j =1,… ,dd, where a=2−Î2h2/h1 and b=2
−Î2h1/h2. P0 has two eigenvalues,l0=0 andl1=2−a−b,
each with ad-fold degeneracy. Thus the optimumP0 is al-
ways an operator of rankd. Note that 2Î2−2øl1ø1 in the
whole intervalFøÎh1/h2ø1/F. Hence in this parameter
interval the optimum detection operators yielding the lower
bound Q0 are P1=aP1' and P2=bP2'. At the upper and
lower limits of the interval the measurement turns into the
von Neumann measurements that give the failure probabili-
ties QN1i=QN2 andQN2i=QN1, respectively. Since in our ex-
ample TrsP2r1d=TrsP1r2d=F2, we find thatQN1=h1+h2F

2

and QN2=h2+h1F
2. Thus we derived a measurement strat-

egy that yields the equality sign in Eq.s3d for two mixed
states.

In our next examples we focus on the cased1i=d2i=1.
First we assume that the density operators given in Eq.s8d
have arbitrary ranksd1 and d2, and thatkr l usml=a dl,1dm,1

with uau,1. This yields F=Îs1r1uau, TrsP2r1d=F2/s1,
TrsP1r2d=F2/ r1 and d1i=d2i=1. For the parameter range
specified in Eq.s22d, we obtain the optimum detection op-
erators
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P1 = S1 −Îh2

h1

F

r1
D uṽ1lkṽ1u

s1 − uau2d2 + o
l=2

d1

ur llkr lu,

P2 = S1 −Îh1

h2

F

s1
D ur̃̄1lkr̃̄1u

s1 − uau2d2 + o
m=2

d2

usmlksmu,

where we introduceduṽ1l= ur1l−aus1l and ur̃̄1l= us1l−a* ur1l.
This solution can be applied to the problem of quantum

state comparisonf16g, where two identical quantum objects
are each prepared either in the stateuc1l, or in the stateuc2l,
and where we wish to determine unambiguously whether the
states are equal or different. The task amounts to distinguish-
ing the two-particle states r1=s1/2dsuc1,c1lkc1,c1u
+ uc2,c2lkc2,c2ud and r2=s1/2dsuc1,c2lkc1,c2u
+ uc2,c1lkc2,c1ud, where F= ukc1uc2lu. Upon determining
the eigenstates, we find that the structure ofr1 andr2 corre-
sponds to the one treated in the above special example, with
r1=s1=s1+F2d /2 anduau=2F / s1+F2d. The minimum failure
probability in unambiguous quantum state comparison fol-
lows to be

Qopt =52Îh1h2F if Îhmin

hmax
ù

2F

1 + F2

hmax
2F2

1 + F2 + hmin
1 + F2

2
otherwise. 6

s24d

Here hminshmaxd is the smallerslargerd of the valuesh1=p1
2

+p2
2 andh2=2p1p2, wherep1 andp2 are the prior probabili-

ties of the statesuc1l and uc2l, respectively.
As our final example we mention the problem of discrimi-

nating a pure state,r1= ur1lkr1u, from a mixed stater2, or
from a set of pure states, respectively, that has been intro-

duced as quantum state filteringf5,17g. In this case
TrsP1r2d=F2 and TrsP2r1d=ir1

i i2. In the parameter interval
given by Eq.s22d the optimum detection operators take the
form

P1 = S1 −Îh2

h1
FD uv1lkv1u

1 − ir1
i i2 ,

P2 = S1 −Îh1

h2

ir1
i i2

F
D urW1lkrW1u

1 − ir1
i i2 + P28,

and the previous solution for the minimum failure probabil-
ity in optimum unambiguous quantum state filteringf5,6g is
readily regained.

In summary, we performed a detailed analysis of the
probabilistic measurement for unambiguous discrimination
between two arbitrary mixed quantum states. We derived
general analytical relations that depend on five quantities
characterizing the mutual relationship of the density opera-
tors of the states. These quantities are the expressions
TrsP1r2d and TrsP1ir2d, as well as TrsP2r1d and TrsP2ir1d
and, most importantly, the fidelityF. We also showed that the
method developed in this paper can be used to find complete
analytical solutions that describe the optimum measurement
for special cases.
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