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We consider two different optimized measurement strategies for the discrimination of nonorthogonal quan-
tum states. The first is ambiguous discrimination with a minimum probability of inferring an erroneous result,
and the second is unambiguous, i.e., error-free, discrimination with a minimum probability of getting an
inconclusive outcome, where the measurement fails to give a definite answer. For distinguishing between two
mixed quantum states, we investigate the relation between the minimum-error probability achievable in am-
biguous discrimination, and the minimum failure probability that can be reached in unambiguous discrimina-
tion of the same two states. The latter turns out to be at least twice as large as the former for any two given
states. As an example, we treat the case where the state of the quantum system is known to be, with arbitrary
prior probability, either a given pure state, or a uniform statistical mixture of any number of mutually orthogo-
nal states. For this case we derive an analytical result for the minimum probability of error and perform a
quantitative comparison with the minimum failure probability.
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I. INTRODUCTION

Stimulated by the rapid developments in quantum com-
munication and quantum cryptography, the question as to
how to optimally discriminate between different quantum
states has gained renewed interest[1]. The problem is to
determine the actual state of a quantum system that is pre-
pared, with given prior probability, in a certain but unknown
state belonging to a finite set of given possible states. When
the possible states are not mutually orthogonal, it is impos-
sible to devise a measurement that can distinguish between
them perfectly. Therefore optimum measurement strategies
have been developed with respect to various criteria.

Recently much work has been devoted to the strategy of
optimum unambiguous discrimination. Here it is required
that, whenever a definite outcome is returned after the state-
distinguishing measurement, the result should be error free,
i.e., unambiguous. This can be achieved at the expense of
allowing for a nonzero probability of inconclusive outcomes,
where the measurement fails to give a definite answer. When
the probability of failure is minimum, optimum unambigu-
ous discrimination is realized. Analytical solutions for the
minimum failure probabilityQF have been found for distin-
guishing between two[2–5] and among three[6–8] arbitrary
pure states, and between any number of pure states that are
symmetric and equiprobable[9]. On the other hand, the in-
vestigation of unambiguous discrimination involving mixed
states, or sets of pure states, respectively, started only re-
cently [10–16]. So far exact analytical results are known
only for simple cases[11–14]. In addition, for unambigu-
ously discriminating between two arbitrary mixed states,
general upper and lower bounds have been derived for the
minimum failure probability[14].

In contrast to unambiguous discrimination, the earliest
measurement strategy for distinguishing nonorthogonal
quantum states requires that a definite, i.e., conclusive out-
come is to be returned in each single measurement. This
means that errors in the conclusive result are unavoidable
and the discrimination is ambiguous. Based on the outcome
of the measurement, a guess is made as to what the state of
the quantum system was. The optimum measurement then
minimizes the probability of errors, i.e., the probability of
making a wrong guess. For distinguishing two mixed quan-
tum states, a general expression for the minimum achievable
error probabilityPE has been derived in the pioneering work
by Helstrom[17]. When more than two given states are in-
volved, an analytical solution is known only for a restricted
number of cases, the most important of them being the case
of equiprobable and symmetric states that are either pure
[18] or mixed[19,20]. Finally it is worth mentioning that the
original minimum-error discrimination strategy has been ex-
tended to determine the minimum achievable probability of
errors under the condition that a fixed finite probability of
inconclusive outcomes is allowed to occur[21,22], giving no
definite result.

In the present contribution we investigate the relation be-
tween the minimum-error probabilityPE for ambiguously
distinguishing two mixed quantum states, and the minimum
failure probabilityQF attainable in unambiguous discrimina-
tion of the same two states. In Sec. II we show that for two
arbitrary mixed quantum states the latter is always at least
twice as large as the former. As an analytically solvable spe-
cial example, in Sec. III we treat the problem of deciding
whether the state of the quantum system is either a given
pure state, or a mixed state being a uniform statistical mix-
ture of any number of mutually orthogonal states. First we
derive an analytical expression for the minimum-error prob-
ability in this example, extending a previous result[23] to*Email address: ulrike.herzog@physik.hu-berlin.de
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the case of arbitrary prior probabilities. We then perform a
comparison with unambiguous discrimination by making use
of the general solution for the minimum failure probability in
unambiguous quantum state filtering out of an arbitrary num-
ber of states[12]. Note that in our preceding work we con-
sidered state discrimination involving mixed states in the
context of distinguishing between two sets of pure states,
referring to the discrimination problem as filtering[11,12,24]
when the first set contains only a single state. Apart from
being an illustration for the general relation betweenPE and
QF, our specific example is of interest on its own for appli-
cations that are mentioned in the conclusions.

II. INEQUALITY FOR THE MINIMUM PROBABILITIES
OF ERROR AND OF FAILURE

In the frame of the quantum detection and estimation
theory [17], a measurement that discriminates between two
mixed states, described by the density operatorsr1 and r2,
and occurring with the prior probabilitiesh1 andh2=1−h1,
respectively, can be formally described with the help of two
detection operatorsP1 and P2. These operators are defined
in such a way that TrsrP jd is the probability to infer the
system is in the stater j if it has been prepared in the stater.
Since the probability is a real non-negative number, the de-
tection operators have to be Hermitean and positive
semidefinite. In the error-minimizing measurement scheme
the measurement is required to be exhaustive and conclusive
in the sense that in each single case with certainty one of the
two possible states is identified, although perhaps incorrectly,
while inconclusive results allowing no identification do not
occur. This leads to the requirement

P1 + P2 = IDS
, s1d

where IDS
denotes the unit operator in theDS dimensional

physical state space of the quantum system under consider-
ation. The overall probabilityPerr to make an erroneous
guess for any of the incoming states is then given by

Perr = 1 −o
j=1

2

h jTrsr jP jd=h1Trsr1P2d + h2Trsr2P1d, s2d

where use has been made of the relationh1+h2=1. In order
to find the strategy for minimum-error discrimination, one
has to determine the specific set of detection operators that
minimizes the value ofPerr under the constraint given by Eq.
(1). As found by Helstrom[17], the smallest achievable error
probability Perr

min=PE is given by

PE = 1
2s1 − Truh2r2 − h1r1ud, s3d

whereusu=Îs†s for any operators.
While the original derivation of Eq.(3) relies on varia-

tional techniques, for the purpose of this paper it is advanta-
geous to analyze the two-state minimum-error measurement
with the help of an alternative method[25,26]. To this end
we express Eq.(2) alternatively as

Perr = h1 + TrsLP1d = h2 − TrsLP2d, s4d

where we introduced the Hermitean operator

L = h2r2 − h1r1 = o
k=1

DS

lkufklkfku. s5d

Here the statesufkl denote the orthonormal eigenstates be-
longing to the eigenvalueslk of the operatorL. By using the
spectral decomposition ofL, we get the representations[23]

Perr = h1 + o
k=1

DS

lkkfkuP1ufkl=h2 − o
k=1

DS

lkkfkuP2ufkl. s6d

The eigenvalueslk are real, and without loss of generality
we can number them in such a way that

lk , 0 for 1ø k , k0,

lk . 0 for k0 ø k ø D,

lk = 0 for D , k ø DS. s7d

The optimization task is then to determine the specific op-
eratorsP1, or P2, respectively, that minimize the right-hand
side of Eq.(6) under the constraint that

0 ø kfkuP jufkl ø 1 s j = 1,2d s8d

for all eigenstatesufkl. The latter requirement is due to the
fact that TrsrP jd denotes a probability for anyr. From this
constraint and from Eq.(6) it immediately follows that the
smallest possible error probability,Perr

min; PE, is achieved
when the detection operators are chosen in such a way that
the equationskfkuP1ufkl=1 andkfkuP2ufkl=0 are fulfilled
for eigenstates belonging to negative eigenvalues, while
eigenstates corresponding to positive eigenvalues obey the
equationskfkuP1ufkl=0 andkfkuP2ufkl=1. Hence the opti-
mum detection operators are given by

P1 = o
k=1

k0−1

ufklkfku, P2 = o
k=k0

D

ufklkfku, s9d

where these expressions have to be supplemented by projec-
tion operators onto eigenstates belonging to the eigenvalue
lk=0, in such a way thatP1+P2= IDS

. Using Eq.(2), from
the optimum detection operators the minimum-error prob-
ability is found to be[23]

PE = h1 − o
k=1

k0−1

ulku = h2 − o
k=k0

D

ulku. s10d

By taking the sum of these two alternative representations,
usingh1+h2=1, we arrive at

PE =
1

2S1 − o
k

ulkuD =
1

2
s1 − TruLud, s11d

which is equivalent to Eq.(3). Interestingly, for characteriz-
ing the measurement described by the detection operators
given in Eq.(9), two different cases have to be considered.
Provided that there are positive as well as negative eigenval-
ues in the spectral decomposition ofL, the measurement
obviously is a von Neumann measurement that consists of
performing projections onto the two orthogonal subspaces
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spanned by the two sets of stateshuf1l , . . . ,ufk0−1lj and
hufk0

l , . . . ,ufDlj. On the other hand, when negative eigenval-
ues do not exist it follows thatP1=0 and P2= IDS

, which
means that the minimum-error probability can be achieved
by always guessing that the quantum system is in the state
r2, without performing any measurement at all. Similar con-
siderations hold true in the absence of positive eigenvalues.
These findings are in agreement with the recent observation
[27] that a measurement does not always aid minimum-error
discrimination. In Sec. III we shall discuss a corresponding
example.

In the error-minimizing scheme for discriminating two
mixed statesr1 andr2 of a quantum system, a nonzero prob-
ability of making a correct guess can always be achieved.
However, it is obvious that the states can only be distin-
guished unambiguously when at least one of the mixed states
contains at least one component, in theDS dimensional
physical state space of the quantum system, that does not
also occur in the other mixed state. As has been shown re-
cently [14], the minimum failure probability in unambiguous
discrimination,QF, obeys the inequality

QF ù 5 2Îh1h2 Fsr1,r2d if Îhmin

hmax
ù F,

hmin + hmaxfFsr1,r2dg2 otherwise.

s12d

Herehmin shmaxd is the smaller(larger) of the two prior prob-
abilities h1 andh2, andF is the fidelity, defined as

Fsr1,r2d = TrfsÎr2 r1
Îr2d1/2g. s13d

Since the two lines of Eq.(12) are the geometric and the
arithmetic mean, respectively, of the same expressions, it is
clear that the first line denotes the overall lower boundQL on
the failure probability, i.e.,

QF ù QL ; 2Îh1h2 Fsr1,r2d s14d

for arbitrary values of the prior probabilities.
In the following we want to compare the minimum-error

probability PE given by Eq.(3) with the smallest possible
failure probability that is achievable in a measurement de-
signed for discriminating the two mixed states unambigu-
ously. Our procedure will be closely related to the derivation
of inequalities between the fidelity and the trace distance
[28]. In order to estimateQL, or the fidelity, respectively, it is
advantageous to use a particular orthonormal basis. It has
been proven[25,28] that when the basis states are chosen to
be the eigenstateshullj of the Hermitean operator
r2

−1/2sÎr2 r1
Îr2d1/2r2

−1/2, the fidelity takes the form

Fsr1,r2d = o
l

Îkl ur1ullkl ur2ull=o
l

Îr lsl . s15d

HereSlullkl u= I, with I being the unit operator, and we intro-
duced the abbreviationsr l =kl ur1ull andsl =kl ur2ull. The lower
bound on the failure probability then obeys the equation

1 − QL = 1 − 2Îh1h2o
l

Îr l sl=o
l

sÎh1r l − Îh2sld2,

s16d

where the second equality sign is due to the relationh1
+h2=1 and to the normalization conditions Trr1=ol r l =1
and Trr2=ol sl =1.

Let us now estimate the minimum-error probabilityPE,
using the same set of basis stateshullj. Because of Eq.(11)
and of the fact thatkfkufkl=ol ukfku llu2=1, we can write

1 − 2PE = o
k

ulku=o
l

o
k

ulkuukfkullu2ùo
l
Uo

k

lkukfkullu2U
=o

l

ukl uLullu, s17d

where the last equality sign follows from the spectral decom-
position of the operatorL [see Eq.(5)]. After reexpressingL
in terms of the density operators describing the given states,
we arrive at

1 − 2PE ù o
l

ukl uh1r1 − h2r2ullu

=o
l

uÎh1r l− Îh2sluuÎh1r l + Îh2slu. s18d

By comparing the expressions on the right-hand sides of Eqs.
(16) and (18) it becomes immediately obvious that 1−2PE
ù1−QL, or PEøQL /2, respectively. Together with Eq.(14)
this implies our final result

PE ø
1
2QF. s19d

Hence for two arbitrary mixed states, occurring with arbi-
trary prior probabilities, the smallest possible failure prob-
ability in unambiguous discrimination is at least twice as
large as the minimum probability of errors achievable for
ambiguously distinguishing the same states.

III. DISTINGUISHING BETWEEN A PURE STATE
AND A UNIFORMLY MIXED STATE

For a quantitative comparison between the minimum
probabilities of error and of failure we wish to consider a
state discrimination problem that involves mixed states and
that can be solved analytically with respect to the two differ-
ent strategies under investigation. Minimum-error discrimi-
nation between two mixed states, or between two sets of
states both consisting of a certain number of given pure
states, respectively, has been recently treated analytically un-
der the restriction that the total Hilbert space collectively
spanned by the states is only two dimensional[24]. When the
dimensionalityD of the relevant Hilbert space is larger than
two, however, the explicit analytical evaluation ofPE poses
severe difficulties, due to the fact that applying the Helstrom
formula amounts to calculating the eigenvalues of aD di-
mensional matrix. In the following we consider a simple yet
nontrivial discrimination problem where we are able to find
an analytical solution for minimum-error discrimination in a
Hilbert space of arbitrary many dimensions.
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We assume that the quantum system is either prepared,
with the prior probabilityh1, in the pure state

r1 = uclkcu s20d

or, with the prior probabilityh2=1−h1, in a uniform statis-
tical mixture ofd mutually orthonormal states, described by
the density operator

r2 =
1

d
o
j=1

d

uujlkuju =
1

d
Id s21d

with kui uujl=di j and Id denoting the unit operator in thed
dimensional Hilbert spaceHd spanned by the states
uu1l , . . . ,uudl. It is convenient to introduce additional mutu-
ally orthogonal and normalized statesuv0l and uv1l in such a
way that

ucl = Î1 − ici i2uv0l + ici iuv1l, s22d

whereici i uv1l;ucil is the component ofucl that lies inHd,
i.e.,

ici i2 = kciucil = o
j=1

d

ukujuclu2. s23d

The total Hilbert space spanned by the set of states
hucl , uu1l , . . . ,uudlj is d dimensional if ici i=1, and sd+1d
dimensional otherwise. WithDS denoting the dimensionality
of the physical state space of the quantum system under con-
sideration, it is clear that the relationsDSùd or DSùd+1
have to be fulfilled in the former and the latter case, respec-
tively.

In order to calculate the minimum-error probabilityPE
with the help of Eq.(11), we have to determine the eigen-
values l of the operatorL=h2r2−h1r1. This amounts to
solving the characteristic equation detA=0 with

Asld = lId+1 − L = lId+1+ h1uclkcu −
h2

d
Id, s24d

where the unit operator inHd+1 can be written asId+1
= uv0lkv0u+ Id. We now take advantage of the fact that by
changing the basis system the unit operator inHd can be
alternatively expressed asId= uv1lkv1u+o j=2

d uv jlkv ju with uv1l
being given by Eq.(22) and kvi uv jl=di j for i , j =0,1, . . . ,d.
Therefore

A = luv0lkv0u + h1uclkcu+ Sl −
h2

d
Do

j=1

d

uv jlkv ju, s25d

and by using the decomposition ofucl in this basis, Eq.(22),
we readily obtain the matrix elementsAij =kviuAslduv jl. From
the condition detA=0 the eigenvalues are found to be

l1,2=
1

2
Fh2

d
− h1 7ÎSh2

d
+ h1D2

− 4h1
h2

d
ici i2G ,

lk =
h2

d
sk = 3, . . .d + 1d. s26d

Clearly, when the set of stateshkcu , uu1l , . . . ,uudlj is linearly
independent, i.e., forici i,1, the square root in the first of
the equations(26) is larger thanuh2/d−h1u. Thereforel1 is
the only negative eigenvalue and, according to Eq.(9), the
detection operatorP1 that determines the minimum-error
measurement scheme is the projector onto the eigenstate be-
longing to the negative eigenvalue. Provided thath1.h2/d,
the same holds true forici i=1. However, whenici i=1 and
h1øh2/d, a negative eigenvalue does not exist, implying
thatP1=0. This means that in the latter case one cannot find
a measurement strategy that yields a smaller probability of
errors than always guessing that the quantum system is pre-
pared in the stater2. By inserting the eigenvalues into Eq.
(11) we finally arrive at the minimum-error probability

PE =
h1

2
+

h2

2d
−

1

2
ÎSh1 +

h2

d
D2

− 4h1
h2

d
ici i2. s27d

For d=1, Eq. (27) reduces to the well-known Helstrom
bound [17] for minimum-error discrimination between the
two pure statesucl and uu1l.

Now we turn to unambiguous discrimination. The task of
distinguishing without errors between the two states given by
Eqs. (20) and (21), at the expense of allowing inconclusive
results to occur where the procedure fails, is a special case of
unambiguous quantum state filtering[12]. In the latter prob-
lem we want to discriminate, without error, a quantum state
ucl occurring with the prior probabilityh1, from a set of
stateshuc jlj, with prior probabilitiesh j8. With the substitution
h j8=h2/d s j =1, . . . ,dd, the solution given in Ref.[12] yields
for our specific example the minimum failure probability

QF =52Îh1
h2

d
ici i if ici i4 ,

h2

h1d
ici i2 , 1,

h1 +
h2

d
ici i2 if

h2

h1d
ici i2 ù 1,

h1ici i2 +
h2

d
if

h2

h1d
ø ici i2,

s28d

whereici i is defined by Eq.(23), and where againh1+h2
=1. As shown in Ref.[12], the second and the third line of
Eq. (28) refer to two different types of von Neumann mea-
surements while the failure probability given in the first line
can be reached only by a generalized measurement. In the
following we compare the minimum-error probabilityPE
with the minimum failure probabilityQF, considering several
special cases.

A considerable simplification arises when the states
ucl , uu1l , . . . ,uudl all occur with the same prior probabilities,
i.e., when h1=h2/d=1/sd+1d [23]. In this case Eq.(27)
yields
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PE =
1

d + 1
s1 −Î1 − ici i2d , s29d

and from Eq.(28) we obtain

QF =
2

d + 1
ici i, s30d

where the latter expression is valid in the whole range of the
possible values ofici i. Whenr1 andr2 are nearly orthogo-
nal, i.e., whenici i!1, the minimum-error probabilityPE
takes the approximate valueici i2/ s2d+2d and is therefore
significantly smaller than the minimum failure probability
QF that is achievable in unambiguous discrimination(see
Fig. 1). On the other hand, whenici i=1 the ratioQF /PE
=2 is reached. This is an example from which it becomes
obvious that the bound given by the general inequality Eq.
(19) is tight.

For arbitrary prior probabilities we first investigate the
discrimination in the linearly dependent caseici i=1 (see
Fig. 2). From Eq. (27) with h2=1−h1 we then find the

minimum-error probability

PE =
1

2d
f1 + h1sd − 1d− u1 − h1sd + 1dug. s31d

Hence as long ash1ø1/sd+1d, which is equivalent toh1

øh2/d, we getPE=h1. As discussed in connection with the
eigenvalues given in Eq.(26), the best discrimination strat-
egy is then to always guess the quantum system to be in the
stater2, and it is not necessary to perform any measurement
at all. However, forh1ù1/sd+1d andici i=1 we obtain the
minimum-error probabilityPE=s1−h1d /d. Now the opti-
mum strategy for minimum-error discrimination is to infer
the system to be in the stater1 when the detector alongucl
clicks, which is just the eigenstate belonging to the negative
eigenvalue, and that the state isr2 for a click in any projec-
tion onto a direction orthogonal toucl. With ici i=1, from
Eq. (28) the minimum failure probability in unambiguous
discrimination follows to be

QF = h1 +
1

d
s1 − h1d. s32d

The strategy for optimum unambiguous discrimination in
this case is also the von Neumann measurement consisting of
projections onto the stateucl and onto the subspace orthogo-
nal to ucl. When a click occurs from projection onto the
orthogonal subspace, the stater2 is uniquely identified. The
measurement fails to give a conclusive answer when either
the stateucl was present, which occurs with probabilityh1,
or when the stater2 was present and a click resulted from
projection ontoucl, which occurs with the probabilityh2/d.

Finally in Fig. 3 an example is depicted for arbitrary prior
probabilities and linearly independent states, whereici i,1.
Obviously the minimum-error probabilityPE given by Eq.
(27) is in general much smaller than the minimum failure
probability QF /2 given by Eq.(28).

IV. CONCLUSIONS

We showed that the minimum-error probabilityPE for
ambiguously distinguishing any two mixed quantum states
without inconclusive results is always at most half as large as
the minimum failure probabilityQF for unambiguous, i.e.,
error-free discrimination of the same two states, at the ex-

FIG. 1. Minimum probabilities of error in ambiguous discrimi-
nation PE (full line), and of failure in unambiguous discrimination
QF (dashed line), for distinguishing betweenr1= uclkcu and r2

= 1
3o j=1

3 uujlkuju, wherekui uujl=di j . The probabilities are plotted vs
the norm of the parallel component,ici i=so j=1

3 ukuj uclu2d1/2, and
the prior probability ofr1 is assumed to beh1=0.25.

FIG. 2. Minimum-error probability in ambiguous discrimination
PE (full line) and minimum failure probability in unambigous dis-
crimination QF (dashed line) for the statesr1 and r2 specified in
Fig. 1. The probabilities are depicted vs the prior probabilityh1 of
the stater1, in the special case whereici i=1.

FIG. 3. Same as Fig. 2 but for the caseici i=0.5.

DISTINGUISHING MIXED QUANTUM STATES:… PHYSICAL REVIEW A 70, 022302(2004)

022302-5



pense of the occurrence of inconclusive results where the
measurement fails. As an example, we gave an exact analyti-
cal solution to the problem of determining whether the state
of the quantum system is either a given pure state occurring
with arbitrary prior probability, or a uniform statistical mix-
ture of any number of mutually orthogonal states. Uniformly,
i.e., completely mixed states have been considered in the
context of estimating the quality of a source of quantum
states, as has been recently discussed in connection with
single-photon sources, introducing the new measure of suit-
ability [29]. This measure relies on identifying all states that
would be useful for the specific application, finding a set of
states spanning the space of the useful states, and then defin-

ing a target state as a complete mixture of those states. If the
mutually orthogonal states in the uniform statisitical mixture
span the entire state space of the quantum system, the mixed
state describes a totally random state, containing no informa-
tion at all. Discriminating between the pure state and the
mixed state then amounts to deciding whether the system has
been reliably prepared in the pure state, or whether the
preparation has failed[27].
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