PHYSICAL REVIEW A 70, 022302(2004)

Distinguishing mixed quantum states: Minimume-error discrimination
versus optimum unambiguous discrimination
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We consider two different optimized measurement strategies for the discrimination of nonorthogonal quan-
tum states. The first is ambiguous discrimination with a minimum probability of inferring an erroneous result,
and the second is unambiguous, i.e., error-free, discrimination with a minimum probability of getting an
inconclusive outcome, where the measurement fails to give a definite answer. For distinguishing between two
mixed quantum states, we investigate the relation between the minimum-error probability achievable in am-
biguous discrimination, and the minimum failure probability that can be reached in unambiguous discrimina-
tion of the same two states. The latter turns out to be at least twice as large as the former for any two given
states. As an example, we treat the case where the state of the quantum system is known to be, with arbitrary
prior probability, either a given pure state, or a uniform statistical mixture of any number of mutually orthogo-
nal states. For this case we derive an analytical result for the minimum probability of error and perform a
guantitative comparison with the minimum failure probability.
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[. INTRODUCTION In contrast to unambiguous discrimination, the earliest
measurement strategy for distinguishing nonorthogonal

munication and quantum cryptography, the question as tguantum states requires Fhat a def_inite, i.e., conclusive out-
how to optimally discriminate between different quantumCOme is to be returned in each single measurement. This
states has gained renewed intergt The problem is to Means thgt errors in the con_cluswe result are unavoidable
determine the actual state of a quantum system that is pré&nd the discrimination is ambiguous. Based on the outcome
pared, with given prior probability, in a certain but unknown Of the measurement, a guess is made as to what the state of
state belonging to a finite set of given possible states. Wheth€ gquantum system was. The optimum measurement then
the possible states are not mutually orthogonal, it is imposminimizes the probability of errors, i.e., the probability of
sible to devise a measurement that can distinguish betweenaking a wrong guess. For distinguishing two mixed quan-
them perfectly. Therefore optimum measurement strategietsim states, a general expression for the minimum achievable
have been developed with respect to various criteria. error probabilityPg has been derived in the pioneering work
Recently much work has been devoted to the strategy dby Helstrom[17]. When more than two given states are in-
optimum unambiguous discrimination. Here it is requiredvolved, an analytical solution is known only for a restricted
that, whenever a definite outcome is returned after the statgrumber of cases, the most important of them being the case
distinguishing measurement, the result should be error fregf equiprobable and symmetric states that are either pure
i.e., unambiguous. This can be achieved at the expense pfg] or mixed[19,20. Finally it is worth mentioning that the
allowing for a nonzero probability of inconclusive outcomes, griginal minimum-error discrimination strategy has been ex-
where the measurement fails to give a definite answer. Wheggnded to determine the minimum achievable probability of
the probability of failure is minimum, optimum unambigu- errors under the condition that a fixed finite probability of
ous discrimination is realized. Analytical solutions for the inconclusive outcomes is allowed to Ocqgﬂ_,za, g|v|ng no
minimum failure probabilityQr have been found for distin- definite result.
guishing between twf2—5 and among threg6—8] arbitrary In the present contribution we investigate the relation be-
pure states, and between any number of pure states that &{feen the minimum-error probabilitPe for ambiguously
symmetric and equiprobabl®]. On the other hand, the in- distinguishing two mixed quantum states, and the minimum
vestigation of unambiguous discrimination involving mixed fajlure probabilityQr attainable in unambiguous discrimina-
states, or sets of pure states, respectively, started only rgpn of the same two states. In Sec. Il we show that for two
cently [10-16. So far exact analytical results are known grhitrary mixed quantum states the latter is always at least
only for simple case§11-14. In addition, for unambigu- twice as large as the former. As an analytically solvable spe-
ously discriminating between two arbitrary mixed states.cjal example, in Sec. Ill we treat the problem of deciding
general upper and lower bounds have been derived for thghether the state of the quantum system is either a given
minimum failure probability{14]. pure state, or a mixed state being a uniform statistical mix-
ture of any number of mutually orthogonal states. First we
derive an analytical expression for the minimum-error prob-
*Email address: ulrike.herzog@physik.hu-berlin.de ability in this example, extending a previous res@8] to
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the case of arbitrary prior probabilities. We then perform a Ds
comparison with unambiguous discrimination by making use A= 70— mipr = 2 Ml (5)
of the general solution for the minimum failure probability in k=1

unambiguous quantum statg filtering out qf an arbitrary nUmyqre the states,) denote the orthonormal eigenstates be-
ber of stateg§12]. Note that in our preceding work we con- longing to the eigenvalues, of the operator. By using the

sidered state (_:Ilscr_lml_natlon involving mixed states in thespectral decomposition of, we get the representatiof3]
context of distinguishing between two sets of pure states,
Ds Ds

referring to the discrimination problem as filterifitl, 12,24
when the first set contains only a single state. Apart from  Perr= 71+ 2 M idlIli| =17~ 2 M ilTLl ). (6)
being an illustration for the general relation betwdgnand k=1 k=1

Qr, our specific example is of interest on its own for appli- The eigenvalues, are real, and without loss of generality
cations that are mentioned in the conclusions. we can number them in such a way that

II. INEQUALITY FOR THE MINIMUM PROBABILITIES M<O0 for 1=sk<Kky,
OF ERROR AND OF FAILURE

In the frame of the quantum detection and estimation M>0 for ko<k<D,

theory [17], a measurement that discriminates between two
mixed states, described by the density operapgrand p,, A=0 for D<ksDs. (7)

and occurring with the prior probabilitieg, and 7,=1-71,  The optimization task is then to determine the specific op-
respectively, can be formally described with the help of tWOeratorsl'Il, or I1,, respectively, that minimize the right-hand
detection operatorkl; andIl,. These operators are defined gjqe of Eq.(6) under the constraint that

in such a way that Tpll;) is the probability to infer the _
system is in the statg, if it has been prepared in the state 0=<(dlljlp<1 (j=1,2 (8)

Sinc;e the probabilit);} is a real Son—ﬂegat_ive numb(;er, the. qefor all eigenstates$e,). The latter requirement is due to the
tection operators have to be Hermitean and positivg,. yq¢ Tfpll;) denotes a probability for any. From this

semidefinite. In th_e error_-minimizing measurement schem_ onstraint and from Eq6) it immediately follows that the
the measurement is required to be exhaustive and conclusng]en min

in the sense that in each single case with certainty one of t%hallest possible error probabilitfle, = Pe, is achieved

two possible states is identified, although perhaps incorrectl)( en the detection operators are chosen in such a way that
while inconclusive results allowing no identification do not he equations y{ILy| =1 and(¢l1,|¢1)=0 are fulfilled

occur. This leads to the requirement fqr eigenstates belongl_ng to negative .e|genvalues, while
eigenstates corresponding to positive eigenvalues obey the

I+ T, =p, (1)  equations(¢y/I1;| =0 and(¢p/Il,|H)=1. Hence the opti-

) . ) ) mum detection operators are given by
WherelDS denotes the unit operator in th2g dimensional -1 5
physical state space of the quantum system under consider- _ _
ation. The overall probabilityP,,, to make an erroneous II,= k% | A, Hz_go|¢k><¢k|' ©)
guess for any of the incoming states is then given by - -
5 where these expressions have to be supplemented by projec-
A _ tion operators onto eigenstates belonging to the eigenvalue
Perr=1 gl 7T (piIL)=mTr(pylly) + 7, Tr(polly), (2) \=0, in such a way thall; +11,=1p_ Using Eq.(2), from
the optimum detection operators the minimum-error prob-

where use has been made of the relatigrt ,=1. In order  apility is found to be[23]
to find the strategy for minimum-error discrimination, one

has to determine the specific set of detection operators that _ o _ 0
minimizes the value oPg,, under the constraint given by Eq. Pe =~ k% N = 772 gf M- (10
(1). As found by Helstronj17], the smallest achievable error B o
probability P,'=Pg is given by By taking the sum of these two alternative representations,
1 using 7, + 7,=1, we arrive at
Pe=3(1 = TH70, = mpal), (3 n 1
where|o|=\oTo for any operatow. Pe= 5(1 - % |7\k|) = 51 - THA], (11

While the original derivation of Eq(3) relies on varia-
tional techniques, for the purpose of this paper it is advantawnhich is equivalent to Eq3). Interestingly, for characteriz-
geous to analyze the two-state minimum-error measuremeiig the measurement described by the detection operators
with the help of an alternative methd@5,26. To this end  given in Eq.(9), two different cases have to be considered.
we express Eq(2) alternatively as Provided that there are positive as well as negative eigenval-
ues in the spectral decomposition a&f the measurement
Perr= 71+ THATY) = 7, = Tr(ATL), @) obviously is 2 von Neumanpn measurement that consists of
where we introduced the Hermitean operator performing projections onto the two orthogonal subspaces
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spanned by the two sets of stat@igy), ... |¢ -0} and 1-Q =1 - 2mm V5= (ot = Vms)2,
{l¢i), - |#p)}. On the other hand, when negative eigenval- | |
ues do not exist it follows thakl;=0 andII,=lp, which (16)

means that the minimum-error probability can be achieved o )
by always guessing that the quantum system is in the staf¢here the second equahty sign 1s du.e. to the relatign
p,, Without performing any measurement at all. Similar con-+72=1 and to the normalization conditions pfFX, rj=1
siderations hold true in the absence of positive eigenvalue@nd Tp;=2 §=1. N _
These findings are in agreement with the recent observation L€t us now estimate the minimum-error probabilf,
[27] that a measurement does not always aid minimum-errd¢Sing the same set of basis stafg¥. Because of Eq(11)
discrimination. In Sec. Ill we shall discuss a correspondinggnd of the fact thatey| # == [(¢|1)[?=1, we can write
example.

In the error-minimizing scheme for discriminating two 1= 2Pe= 2 \N=2 2 NKadDP=2 ‘2 M [?
mixed stateg; andp, of a quantum system, a nonzero prob- K bk bk
ability of making a correct guess can always be achieved. =E KA, (17)
However, it is obvious that the states can only be distin- |

guished unambiguously when at least one of the mixed states o
contains at least one component, in tBg dimensional where the last equality sign follows from the spectral decom-

physical state space of the quantum system, that does nBpSition of the operatoh [see Eq(5)]. After reexpressing\
also occur in the other mixed state. As has been shown rdD terms of the density operators describing the given states,

cently[14], the minimum failure probability in unambiguous We arrive at
discrimination,Qg, obeys the inequalit
F Y a Y 1‘2PE>2 |<||771P1‘ 772P2||>|
|

| H 77m|n — . |
Q= 2\, Fp1.p2) if 4/ _77max =F, (12) :2 Npr = N sV gar + V7,8 (18)

int F(p,p2)? otherwise.
in* el F(p1.p2)] By comparing the expressions on the right-hand sides of Egs.

(16) and (18) it becomes immediately obvious that 1P2
=1-Q,, or Pe=<Q, /2, respectively. Together with E¢L4)
this implies our final result

F(p1,p2) = T (Vpz prvpo) V2. (13) Pe<1Q:. (19

Here min (7max 1S the smalleklargen of the two prior prob-
abilities %, and 7,, andF is the fidelity, defined as

Hence for two arbitrary mixed states, occurring with arbi-
itary prior probabilities, the smallest possible failure prob-
ability in unambiguous discrimination is at least twice as
large as the minimum probability of errors achievable for
ambiguously distinguishing the same states.

Since the two lines of Eq(12) are the geometric and the
arithmetic mean, respectively, of the same expressions, it
clear that the first line denotes the overall lower bo@cn
the failure probability, i.e.,

Qr = QL= 2Vnm, Fp1,pp) (14)
IIl. DISTINGUISHING BETWEEN A PURE STATE
for arbitrary values of the prior probabilities. AND A UNIFORMLY MIXED STATE

In the following we want to compare the minimum-error For a quantitative comparison between the minimum
robability Pg given by Eq.(3) with the smallest possible ; . !
b y e d y Eq.(9 P probabilities of error and of failure we wish to consider a

failure probability that is achievable in a measurement destate discrimination problem that involves mixed states and
signed for discriminating the two mixed states unambigu-that can be solved ar?al tically with respect to the two differ-
ously. Our procedure will be closely related to the derivation y y P

of inequalities between the fidelity and the trace distanceeni. strageg/lves untder myesgge;tut)n. Mlnltr)mtjm-errotr d|scr|tm|—f
[28]. In order to estimat€), , or the fidelity, respectively, it is nation between o mixed statés, or beween 1wo Sets o

advantageous to use a particular orthonormal basis. It h ates both consisting of a certain number of given pure

been proven25,28 that when the basis states are chosen tgrates, respec_:ti\_/ely, has been recen_tly treated analytica_lly un-
be the eigen,states{|l>} of the Hermitean operator der the restriction that the total Hilbert space collectively

2 [ 12 112 N spanned by the states is only two dimensid24]. When the
P2 (NP2 prpa)**p; ", the fidelity takes the form dimensionalityD of the relevant Hilbert space is larger than

_ two, however, the explicit analytical evaluation Bf poses
F(p1p2) = 2 |peD{]pah=2 Vris,. (15  severe difficulties, due to the fact that applying the Helstrom
l l formula amounts to calculating the eigenvalues db ali-
mensional matrix. In the following we consider a simple yet
HereX,|I)(I|=1, with | being the unit operator, and we intro- nontrivial discrimination problem where we are able to find
duced the abbreviationg=(l|p4|l) ands=(l|p,|I). The lower  an analytical solution for minimum-error discrimination in a
bound on the failure probability then obeys the equation  Hilbert space of arbitrary many dimensions.
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We assume that the quantum system is either prepared, 7
with the prior probabilitys;, in the pure state A= q (k=3,...d+1). (26)
= 20 -
pL= YN (20 Clearly, when the set of stat¢&/,|u,), ... ,|uy} is linearly

or, with the prior probability,=1-7,, in a uniform statis-  independent, i.e., fdfy/ | <1, the square root in the first of

tical mixture ofd mutually orthonormal states, described by the equationg26) is larger thanz,/d~»,|. Thereforen, is
the density operator the only negative eigenvalue and, according to . the

detection operatolll; that determines the minimum-error
1 d 1 measurement scheme is the projector onto the eigenstate be-
po= => |uj><uj| ==y (21 longing to the negative eigenvalue. Provided that- #,/d,
diz d the same holds true fdjg/! |=1. However, whetj/ |=1 and
m=<n,/d, a negative eigenvalue does not exist, implying
with (u;|u;)=8; and Iy denoting the unit operator in the  thatIl,=0. This means that in the latter case one cannot find
dimensional Hilbert spacely spanned by the states a measurement strategy that yields a smaller probability of

lup), ... lug. It is convenient to introduce additional mutu- errors than always guessing that the quantum system is pre-
ally orthogonal and normalized statieg) and|v;) in such a  pared in the statg,. By inserting the eigenvalues into Eq.
way that (11) we finally arrive at the minimum-error probability
=1 1 1 + 11!
[9) = VL= [ [Flog) + [ oo, (22) PE:E+E—E\/<nl+ﬂ)2—4nlﬂ||¢||2. o
where||y/ || [vy)=|¢/) is the component dij) that lies inHg, 2 2d 2 d d
ie.,

For d=1, Eq. (27) reduces to the well-known Helstrom

d bound [17] for minimum-error discrimination between the
12 = oy = 2 [y ]2 (23)  two pure stateg)) and |u,).

=1 Now we turn to unambiguous discrimination. The task of
. distinguishing without errors between the two states given b
The total Hllbert. space spgnned' b3|/ the set of State%qs.(QZO) andg(Zl), at the expense of allowing inconglusive g
{|.¢>,|U1>., co U} is d dimensional '_f”'ﬂ ”:1'_ and (_d+1)_ results to occur where the procedure fails, is a special case of
dimensional otherwise. WitBg denoting the dimensionality unambiguous quantum state filterift2]. In the latter prob-
of the physical state space of the quantum system under cofsm, e want to discriminate, without error, a quantum state
sideration, it is clegr that the relatiom>d or Dg=d+1 |y occurring with the prior probabilityp;, from a set of
have to be fulfilled in the former and the latter case, reSpecétates{Wp}, with prior probabilitiesnj’. With the substitution
tively. 7 =m,ld (j=1, ... d), the solution given in Ref12] yields

In order to calculate the minimum-error probabiliBg . o . -
with the help of Eq.(11), we have to determine the eigen- for our specific example the minimum failure probability

values\ of the operatorA =7,p,— 71p4. This amounts to r

solving the characteristic equation det0 with 7 . i
’ | 2 2 < <,
72

AN) =Nlger = A =Nlget -y, 24 _ 7 . 7
(N) =Nlgeq a1t 7| YX (Y] qd (24) Qr =+ 7714_?2”1/)\”2 if _ZdW\ P=1,

1
where the unit operator ift{y4.; can be written adg,; I ||2+ﬂ it £<|W 2
=lvoXvol+14. We now take advantage of the fact that by \ n d md :

changing the basis system the unit operatofHg can be
alternatively expressed &g=|v:)(v|+= L, |vj)vj| with [vy)
being given by Eq(22) and(v;|vj)=4§; fori,j=0,1,...d.
Therefore

(28)

where|¢!'|| is defined by Eq(23), and where agaim, + 7,
=1. As shown in Ref[12], the second and the third line of
d Eq. (28) refer to two different types of von Neumann mea-
— _m AV surements while the failure probability given in the first line
A= NooKval + mly)i+ ()\ d )JZ ‘UJXUJ" (25 can be reached only by a generalized measurement. In the
following we compare the minimum-error probability
and by using the decomposition |gf) in this basis, Eq22), ~ With 'Fhe minimum failure probability), considering several
we readily obtain the matrix elemeng =(v;|A(\)|v;). From special cases.

the condition defA=0 the eigenvalues are found to be A considerable simplification arises when the states
|, |uy), ... luy all occur with the same prior probabilities,
! s _ . !
N R w, 2_4 P S |.g.l,dwhen m=n,/d=1/(d+1) [23]. In this case EQq(27)
1255y T q ™ My 171, ylelas
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FIG. 1. Minimum probabilities of error in ambiguous discrimi- FIG. 3. Same as Fig. 2 but for the cdgé[|=0.5.

nation Pg (full line), and of failure in unambiguous discrimination
Qr (dashed ling for distinguishing betweem;=|#){#| and p, minimum-error probability
=33 |uj)(uj|, where(u;|u))=8;. The probabilities are plotted vs 1
the norm of the parallel componen/ |=(=,|(uj| )2 and Pe=—[1+p(d=1)—|1-7(d+1)|]. (3D
the prior probability ofp; is assumed to bey; =0.25. 2d
Hence as long ag;<1/(d+1), which is equivalent ton,;
P = i(l _ W) (29) < n,/d, we getPg=17,. As discussed in connection with the
E7d+1 v ' eigenvalues given in Eq26), the best discrimination strat-
egy is then to always guess the quantum system to be in the

and from Eq.(28) we obtain statep,, and it is not necessary to perform any measurement
5 at all. However, forp, =1/(d+1) and||## |=1 we obtain the
Q= d_lw IR (30) minimume-error probability Pe=(1-17;)/d. Now the opti-
+

mum strategy for minimume-error discrimination is to infer
éhe system to be in the stapg when the detector alonig))
clicks, which is just the eigenstate belonging to the negative
eigenvalue, and that the statepisfor a click in any projec-
tion onto a direction orthogonal t@s). With ||/ |=1, from

Eq. (28) the minimum failure probability in unambiguous
discrimination follows to be

where the latter expression is valid in the whole range of th
possible values dfy/ ||. Whenp; andp, are nearly orthogo-
nal, i.e., when||/ | <1, the minimum-error probabilityPe
takes the approximate valdig/ |*/(2d+2) and is therefore
significantly smaller than the minimum failure probability
Qe that is achievable in unambiguous discriminati@ee

Fig. 1). On the other hand, whelh)/ |=1 the ratioQg/Pg 1

=2 is reached. This is an example from which it becomes Qr=m+ a(l = 7). (32
obvious that the bound given by the general inequality Eqg.

(19) is tight. The strategy for optimum unambiguous discrimination in

For arbitrary prior probabilities we first investigate the this case is also the von Neumann measurement consisting of
discrimination in the linearly dependent caf# |=1 (see projections onto the state) and onto the subspace orthogo-
Fig. 2. From Eg.(27) with 7,=1-7, we then find the nal to|#). When a click occurs from projection onto the

orthogonal subspace, the stateis uniquely identified. The

1 = measurement fails to give a conclusive answer when either
P the statd ) was present, which occurs with probability,
0.8 /,/’ or when the statg, was present and a click resulted from
Q06 7 projection ontg ), which occurs with the probabilityy,/d.
A, 7 Finally in Fig. 3 an example is depicted for arbitrary prior
o 04l -~ - probabilities and linearly independent states, wherd < 1.
<& - Obviously the minimum-error probabilitPz given by Eg.
0.2 (27) is in general much smaller than the minimum failure
\ /\ probability Q=/2 given by Eq.(28).
0 0.2 0.4 0.6 0.8 1
™ IV. CONCLUSIONS

FIG. 2. Minimum-error probability in ambiguous discrimination ~ We showed that the minimum-error probabiliBt for
Pe (full line) and minimum failure probability in unambigous dis- @mbiguously distinguishing any two mixed quantum states
crimination Qg (dashed ling for the statesp; and p, specified in ~ Without inconclusive results is always at most half as large as
Fig. 1. The probabilities are depicted vs the prior probabitifyof ~ the minimum failure probabilityQr for unambiguous, i.e.,
the statep,, in the special case whefle/'||=1. error-free discrimination of the same two states, at the ex-
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pense of the occurrence of inconclusive results where thing a target state as a complete mixture of those states. If the
measurement fails. As an example, we gave an exact analytinutually orthogonal states in the uniform statisitical mixture
cal solution to the problem of determining whether the statespan the entire state space of the quantum system, the mixed
of the quantum system is either a given pure state occurringtate describes a totally random state, containing no informa-
with arbitrary prior probability, or a uniform statistical mix- tion at all. Discriminating between the pure state and the
ture of any number of mutually orthogonal states. Uniformly,mixed state then amounts to deciding whether the system has
i.e., completely mixed states have been considered in thieeen reliably prepared in the pure state, or whether the

context of estimating the quality of a source of quantumpreparation has failef7].
states, as has been recently discussed in connection with

single-photon sources, introducing the new measure of suit-
ability [29]. This measure relies on identifying all states that
would be useful for the specific application, finding a set of

ACKNOWLEDGMENTS
The research of J.B. was partially supported by the Office

states spanning the space of the useful states, and then defof-Naval Research and by a grant from PSC-CUNY.

[1] A. Chefles, Contemp. Physgll, 401 (2000.

[2] I. D. Ivanovic, Phys. Lett. A123 257 (1987.

[3] D. Dieks, Phys. Lett. A126, 303(1988.

[4] A. Peres, Phys. Lett. AL28 19(1988.

[5] G. Jaeger and A. Shimony, Phys. Lett.197, 83 (1995.

[6] A. Peres and D. R. Terno, J. Phys.3{, 7105(1998.

[7]1 L. M. Duan and G. C. Guo, Phys. Rev. Le80, 4999(1998)
C. W. Zhang, C. F. Li, and G. C. Guo, Phys. Lett.261, 25
(1999.

[8] Y. Sun, M. Hillery, and J. A. Bergou, Phys. Rev.®@4, 022311
(2001).

[9] A. Chefles and S. Barnett, Phys. Lett. 2560, 223(1998.

[10] S. Zhang and M. Ying, Phys. Rev. 85, 062322(2002.

[11] Y. Sun, J. A. Bergou, and M. Hillery, Phys. Rev.6, 032315
(2002.

[12] J. A. Bergou, U. Herzog, and M. Hillery, Phys. Rev. L&D,
257901(2003.

[13] S. M. Barnett, A. Chefles, and I. Jex, Phys. Lett.3@7, 189
(2003.

[16] Y. C. Eldar, M. S. Stojnic, and B. Hassibi, e-print quant-phys
0312061.

[17] C. W. Helstrom,Quantum Detection and Estimation Theory
(Academic, New York, 1976

[18] M. Ban, K. Kurokawa, R. Momose, and O. Hirota, Int. J.
Theor. Phys.55, 22 (1997).

[19] VY. C. Eldar, A. Megretski, and G. C. Verghese, IEEE Trans.
Inf. Theory IT-49, 1007(2003.

[20] C.-L. Chou and L. Y. Hsu, Phys. Rev. A8, 042305(2003.

[21] A. Chefles and S. M. Barnett, J. Mod. Opt5, 1295(1998.

[22] J. Fiurasek and M. Jezek, Phys. Rev6&, 012321(2003.

[23] U. Herzog, J. Opt. B: Quantum Semiclassical Opt. 24
(2004).

[24] U. Herzog and J. A. Bergou, Phys. Rev.65, 050305(2002.

[25] C. A. Fuchs, Ph.D. thesis, University of New Mexico, 1995;
e-print quant-ph/9601020.

[26] S. Virmani, M. F. Sacchi, M. B. Plenio, and D. Markham,
Phys. Lett. A288 62 (200J).

[27] K. Hunter, Phys. Rev. A68, 012306(2003.

[14] T. Rudolph, R. W. Spekkens, and P. S. Turner, Phys. Rev. A28] M. A. Nielsen and I. L. ChuangQuantum Computation and

68, 010301(2003.

Information (Cambridge University Press, Cambridge, 2000

[15] Ph. Raynal, N. Litkenhaus, and S. J. van Enk, Phys. Rev. A29] G. M. Hockney, P. Kok, and J. P. Dowling, Phys. Rev.6k,

68, 022308(2003.

032306(2003.

022302-6



