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Abstract 

In a “gain-guided” self-Q-switched laser with a large cross section, the time required for the development of a steady-state 
modal profile is longer than the pulse duration, resulting in transient profiles that considerably deviate from the steady-state 
profile prescribed by the eigen modes of the waveguide. 

Beam propagation in a high-gain medium is af- 
fected by the imaginary part of refractive index. For 
example, in a gain-guided stripe-geometry semicon- 
ductor laser, the modal properties in the plane of the 
p-n junction is mainly determined by gain guiding 
[ 1,2]. Lasers with gain guiding are characterized by 

curved wave front, large spontaneous emission fac- 
tor, and multi-longitudinal mode operation [ 1,3,4]. 

In solid-state lasers, gain guiding has mostly been ne- 
glected because the gain coefficient is at least one or- 

der of magnitude smaller than in semiconductor las- 
ers. However, in solid-state lasers pumped by a laser 
beam with a Gaussian transverse profile, gain guid- 
ing can be significant [ 5 1. In laser materials with a 

large distributed loss, such as the self-Q-switched 
solid-state lasers [ 671 and three-level lasers [ 8 1, the 
absorption loss outside the pumped region creates a 
wave guiding effect that is equivalent to gain guiding. 

Previous experimental and theoretical studies of 
gain guiding are concerned with the steady-state con- 

ditions prescribed by the eigen modes of the wave- 
guide. However, the steady-state solution is not al- 
ways applicable in pulsed lasers with a large transverse 
dimension and short pulse duration because the time 
it takes for establishing the steady-state profile may 
be longer than the pulse duration. Thus the beam 

characteristics for a pulsed laser with a large beam 
cross section can deviate considerably from the eigen 
modes of the waveguide. In an active waveguide, the 
dynamics of gain saturation and bleaching of absorb- 
ers can also affect the development of the transverse 
mode. The principle of diffraction in a homogeneous 
medium requires that, for a light source of arbitrary 

initial spatial distribution in field amplitude and 
phase, a steady-state profile can be established only 
after propagating through a distance that is much 
larger than the Rayleigh distance, z. = nd2/1, where d 

is the transverse dimension of the beam, n is the re- 
fractive index step, and A is the wavelength. Thus it 

is of interest to explore the modal behaviors in two 
extreme cases, characterized by cr 3 zo, and CT -=K z. 

where 7 is pulse duration. 

In this paper, we present a study of transverse-mode 
development in a pulsed solid-state laser with gain 

guiding. The study uses a diode-pumped monolithic 
self-Q-switched Cr,Nd:YAG laser. Recently, we have 

demonstrated that such devices generate short pulses 
with high degree of spectral purity, intensity stability, 
and pulse shape reproducibility [ 6,7 1. This provides 
a well-controlled model for studying the dynamics of 
the transverse mode. 

The laser device, as shown in Fig. la, consists of a 
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Fig. 1. (a) The schematic of the dipode-pumped monolithic self- 
Q-switched laser with a planar-planar cavity. The near-field pro- 
tile is measured at the output coupler and the far-field profile is 
measured at the focal plane of a lens with 40-cm focal length. (b) 
Spatial profile of the unsaturated imaginary part of the refractive 
index of the waveguide. 

1 .Zmm-thick monolithic Cr,Nd:YAG etalon. The use 
of the short cavity is for ensuring uniform pumping 
over the entire length. The Cr,Nd:YAG crystal con- 
tains 1 at.% neodymium and 0.5 at.% chromium. The 

absorption coefficient at the lasing wavelength is 0.32 
cm-‘. The mirror facing the pumping beam is coated 
for high transmission at 808 nm and 100% reflectiv- 

ity at 1064 nm. The output mirror is coated with 98% 
reflectivity at 1064 nm. The pump laser is a diode 
laser bar with 1 cm stripe-width emitting at 808 nm 
wavelength. The laser is operated in the quasi-CW 
mode with 300 us duration and 10 Hz repetition rates. 
A cylindrical glass rod (CL) of 2-mm diameter is used 
to collimate the pump beam in the vertical direction. 
In order to create a gain-guided laser with a large 
transverse dimension with the limited power of the 
diode laser, the pump beam is focused into an highly 
asymmetric 4 mmX0.2 mm spot by using an 
aspheric lens (AL). The self-Q-switched laser emits 
in a single longitudinal mode with no pulse-to-pulse 

mode hopping an no detectable intensity fluctuation 
and pulse shape variation [ 6,7]. With an input en- 

ergy of 3.2 ml, the output pulse energy is 160 pJ. The 
refractive-index profile based on the gain and loss 

coefficient, is shown in Fig. 1 b. In the limit of low 
repetition rate, thermal lensing effect can be neglected. 

The asymmetric cross section of the pumped re- 

gion results in different modal behaviors in the two 
transverse directions. Along the narrow (0.2 mm) 
direction, the measured intensity distribution has a 

Gaussian-like profile, in agreement with the calcu- 
lated profiles for the fundamental transverse mode. 

The profile also remains unchanged during the pulse. 
Along the long (4 mm) dimension, the beam profile 

deviates considerably from the bell-shape profile of 
the eigen mode of the waveguide. The time-inte- 
grated intensity distribution of the near-field and far- 

field patterns of the laser output, measured using a 
pyroelectric detector array, is shown in Fig. 2. Al- 
though the temporal shape and pulse duration are re- 
producible from pulse to pulse, the pulse shape 
changes with the position within the cross section of 
the laser beam. To further investigate the nature of 
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Fig. 2. Time-integrated near-field (upper) and far-field (lower) 
patterns. 
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the non-Gaussian profile and the position-dependent 
pulse shape, time-resolved near- and far-field mea- 
surements have been carried out. The temporal pulse 
shapes of the laser output at various positions in the 
near-field and far-field are detected by using a high- 
speed avalanche photo-diode and oscilloscope with a 
resolution of 300 ps. The oscilloscope traces are re- 
corded using a digital camera. The recorded tem- 
poral profiles at various positions are then used to 
construct the spatial profiles at various times using a 
computer. Fig. 3 shows the constructed front and rear 
views of the near-field profiles at various times dur- 
ing the pulse. The pulses are found to start from the 
center in a single-lobed profile and gradually expand 
and evolve into a two-lobed profile at the end of the 
pulse. The far-field pattern undergoes a correspond- 
ing evolution as shown in Fig. 4. 

The development of the transverse mode in the 
waveguide laser has been simulated by using the wave- 
propagation method in conjunction with rate equa- 
tions [ 9 1. The laser cavity is modeled as a one-di- 
mensional gain guide between two planar mirrors 
separated by 1.2 mm. The laser cavity is divided into 
four regions of homogeneous medium. For conve- 
nience of numerical treatment, the total phase change 
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Fig. 3. Front (upper) and rear views (lower) of the time-re- 
solved near-field patterns of the longer dimension. 
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Fig. 4. Front (upper) and rear views (lower) of the time-re- 
solved far-field pattern of the longer dimension. 

in a gain region is compressed into a plane of zero 
thickness and inserted in the middle of each region. 
Fast Fourier Transform technique is used to simulate 
the propagation of the wave in the homogeneous me- 
dium. The interaction between gain medium and the 
electric field is taken into account by coupling the lo- 
cal rates of change in population inversion and pho- 
ton number through the following equations: 

n,+r(~)=ni(X)+Ani(X) 3 (1) 

si+l tx) =si(x) + Mi(x) 3 (2) 

~i(x)=(to~~1//2hyo)IEi(x)IZ, 

hi(x)= &P(X)- Li:, ni(X)Si(X) 

ni(x) ~~ -- 

> c&_ ” 
(4) 

ASi( [/Coni(CZ(X)]Si(X)AZi 3 (5) 

where ni(X) and Si(X) are imaginary part of refrac- 
tive index and density of the photon number in the 
ith gain region, (Y is the cavity loss, e0 is the permit- 
tivity constant, c is the speed of light, a is the gain 
cross section, r= is the spontaneous decay time, v. is 
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the frequency of lasing mode, pr is the real part of 
refractive index, V is the gain volume, P(x) is the 
pumping term representing the rate of change of pop- 
ulation-inversion density caused by optical pumping, 
and E(x) is the electric field. Eqs. ( I)-( 5 ) are basi- 
cally the laser rate equations of a local region of 
thickness Azi. The density of population inversion is 
represented by the imaginary part of refractive index. 
The cavity loss is assumed to have the following form: 

a(x)=a,+crO+cu,exp( -r/r,), (6) 

r=(~,c/S) 1 lE(x,t’)]*dt’, 
--03 

(7) 

where (Y, is the mirror loss and a!0 is the residual ab- 
sorption loss in the gain medium under high fluence, 
(Y, is the saturable loss, r is the integrated fluence of 
the laser pulse, and r,= hv/2o, is the saturation flu- 
ence, a, is the cross section of the saturable absorp- 
tion. The pump term, P(x), is assumed to be 

PO 
P(x)= l+exp[ lx]/(w-d)] ’ (8) 

where the PO represents the pumping level and is de- 
termined by the threshold condition, w is the half 
width of pumping size, and d represents the edge ef- 
fect. The parameters are ~~3.5 x 10-‘9cmz, r,=230 
us, PO= 1.2~ lo-l6 m-‘, a,=8.4~ 10e6 m-‘, 
ao=7.0~10-6m-‘,(u,=2.8~10-5m-‘, w=0.4cm, 
dc0.5 mm, r,=2 J/cm*. 

The calculated near-field intensity profiles at var- 
ious times are shown in Fig. 5. The calculation in- 
deed reflects the key features of the experimental ob- 
servation, including the formation of a narrow single- 
lobed profile at the beginning of the pulse and the two- 
lobed profile at the end. Furthermore, the calculated 
modal profile is independent of the spatial distribu- 
tion of the initial input field. In contrast, the calcu- 
lated modal profile for the narrow (w=O. 1 mm) 
waveguide is Gaussian-like and remains stable 
throughout the pulse. This is also consistent with the 
experimental observation. 

The transient dynamics can be viewed as an injec- 
tion and amplification process in which the seed is 
provided by the initial narrow filament formed at the 
center. Our calculation indicates that, since the beam 
is developed from a common seed, the two lobes of 
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Fig. 5. Calculated near-field patterns for comparison with exper- 
imental data shown in Fig. 3. 

the laser output have the same phase and, when fo- 
cused by a lens, form a single-lobed spot without a 
dark fringe at the center. Thus the nature of two-lobed 
profile is different from that of the first-order mode 
whose two lobes have a phase difference of K and, 
when focused by a lens, form a dark fringe at the cen- 
ter. This seeding and amplification process allows the 
energy stored in the large gain medium to be effec- 
tively extracted in a single coherent beam in the fun- 
damental mode without the onset of a higher order 
mode. This process has an important implication for 
the design of Q-switched lasers with a large gain vol- 
ume for high pulse energy. The result may also pro- 
vide useful underlining understanding of the dynam- 
ics of the transverse mode in gain-guided Fabry-Perot 
lasers whose transverse dimension is larger than the 
cavity length, an example being the surface emitting 
semiconductor lasers. 

In conclusion, it is shown, both experimentally and 
theoretically, that a self-Q-switched laser with a large 
transverse dimension exhibits a transient modal pat- 
tern that is considerably different from the eigen mode 
calculated based on the waveguide profile. The dy- 
namics reflects the process of beam expansion and 
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amplification initiated by a narrow filament. 
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