Answer all Questions

FIRST MID-TERM

Thursday September 28, 2017

STUDENT'S NAME:

1. (i) Find $\nabla \phi$ if

(a)
$$\phi = \ln |\mathbf{r}|$$
.

(b)
$$\phi = \frac{1}{|\mathbf{r}|}$$
.

Here, $|\mathbf{r}| = \sqrt{x^2 + y^2 + z^2}$.

(ii) Express $\delta(ax)$ in terms of $\delta(x)$ where a is a constant and can be either positive (a > 0) or negative (a < 0). Justify your answer.

2. Given

$$\mathbf{F} = \frac{k_1}{\rho}\hat{\rho} + k_2 z \ \hat{z} \ , \tag{1}$$

in cylindrical coordinates with k_1 and k_2 constants, evaluate the scalar surface integral

$$\oint \mathbf{F} \cdot d\mathbf{a} \tag{2}$$

over the surface of a closed cylinder around the z axis specified by $z = \pm 3$ and radius R = 2.

- 3. (a) Under what conditions does $\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = (\mathbf{A} \times \mathbf{B}) \times \mathbf{C}$?
 - (b) Does $\mathbf{A} \cdot \mathbf{B} = \mathbf{A} \cdot \mathbf{C}$ imply $\mathbf{B} = \mathbf{C}$? Explain.

Using the Levi-Civita epsilon notation $(\{\epsilon_{ijk}\})$ and the Einstein summation convention, prove that

- (c) $(\mathbf{A} \times \mathbf{B}) \cdot (\mathbf{C} \times \mathbf{D}) = (\mathbf{A} \cdot \mathbf{C})(\mathbf{B} \cdot \mathbf{D}) (\mathbf{A} \cdot \mathbf{D})(\mathbf{B} \cdot \mathbf{C}).$
- (d) $\nabla \times (\nabla \times \mathbf{A}) = \nabla (\nabla \cdot \mathbf{A}) \nabla^2 \mathbf{A}$, for arbitrary vector \mathbf{A} .

In this notation, $\nabla^2 = \nabla \cdot \nabla$.

4. A static charge distribution produces a radial electric field

$$\mathbf{E}(r) = A \, \frac{e^{-kr}}{r^2} \,, \tag{3}$$

where A and k are constant.

For this, the charge distribution is

$$\rho(r) = 4\pi\epsilon_0 A\delta(r) - \frac{\epsilon_0 Ak}{r^2} e^{-kr}$$

Using this result,

- (a) Determine what is the total charge Q in all space?
- (b) This total charge can also be obtained from Gauss's flux theorem

$$Q = \oint_S \epsilon_0 \mathbf{E} \cdot d\mathbf{a}$$
 .

Obtain Q using this method in (b). Here, S is a sphere of radius $R \to \infty$.

5. Determine the electric field $\mathbf{E}(\mathbf{r})$ as a function of the radial distance r caused by a spherical cloud of electrons with a volume charge density $\rho(r) = -\rho_0$ (a constant) for $0 \le r \le R$ (both ρ_0 and R are positive) and $\rho(r) = 0$ for r > R.