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Diffusion coefficient depends on time, not on absorption
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The recent controversy over whether the photon diffusion coefficient depends on absorption is addressed
by use of the analytical solution of the photon transport equation in an infinite homogeneous scattering
medium. The diffusion coefficient is found to be independent of absorption but temporally dependent. Af-
ter a long period of time, the photon diffusion coefficient approaches D � 1�3ms

0, which supports a claim
made by Furutsu and Yamada [Phys. Rev. E 50, 3634 (1994)]. At early times, the diffusion coefficient is
smaller than D � 1�3ms

0, but this reduction cannot be expressed as D � 1�3�ms
0 1 ma�, since the time-

dependent diffusion coefficient is found to be unrelated to absorption. © 2002 Optical Society of America
OCIS codes: 290.1990, 030.5620, 170.5280, 290.7050.
The diffusion approximation of the radiative trans-
fer equation has been used extensively in the study
of photon migration and applications in turbid media.
A controversy exists about the form of diffusion coef-
ficient D in media in coexistence with scattering and
absorption. In traditional derivations of the diffusion
equation from the transport equation, the diffusion co-
efficient is obtained as1 – 4

D � 1�3�ms
0 1 ma� , (1)

where ms
0 is the reduced scattering coefficient and ma

is the absorption coefficient. Furutsu and Yamada5

and Furutsu6 pointed out that this form of D does
not consist of the transformation property of the
transport equation in an infinite homogeneous tur-
bid medium: the photon distribution function at
position r, in direction s and time t, I �r, s, t� �
exp�2cmat�I0�r, s, t�, where I0�r, s, t� is the solution
for the same medium but without absorption. They5,6

suggested another derivation that leads to

D � lt�3 � 1�3ms
0, (2)

which is independent of absorption, where lt is the
transport mean-free path. This claim has been sup-
ported by Bassani et al.,7 Durduran et al.,8 and Nakai
et al.9 based on experiments and Monte Carlo simula-
tions. In contrast, in later papers Aronson and Corn-
gold,10 Rinzema et al.,11 and Durian12, based on their
experiments and numerical simulations, asserted that
D should depend on absorption.

Most recently, we developed an analytical solution
of the transport equation in an infinite homogeneous
medium.13,14 We derived14 an expression for the
spatial cumulants of the photon distribution function
I �r, s, t� at any direction s and time t, exact up to an
arbitrarily high cumulant order, which can be used for
accurate computation of the photon distribution func-
tion. Up to the second cumulant order, we obtained
an approximate Gaussian spatial distribution that
has the exact central position and the exact half-width
of the distribution.13 For photon density N�r, t�,
0146-9592/02/090731-03$15.00/0
at t ! ` our result approaches the center-moved
diffusion approximation (CMDA), with D � 1�3ms

0

independent of absorption. At a finite time, the
diffusion coeff icient D increased from zero at t � 0
to the above value at t ! `. Typically, in the case of
the anisotropic factor g � 0.9 it takes approximately
10lt for the diffusion mode to be valid, as shown
experimentally by Yoo et al.15 This D�t� as a function
of time is determined only by scattering parameters
unrelated to absorption. Hence, it is physically un-
reasonable to use Eq. (1) to reduce the value of D at a
finite time to f it experimental or simulated data.

The time-dependent photon density N�r, t� obtained
from the CMDA in an infinite homogeneous medium
for a collimated pulse source located at r � 0 with in-
cident direction along ẑ is given by16

N�r, t� �
1

�4pDct�3�2 exp

"
2

�r 2 ltẑ�2

4Dct
2 mact

#
, (3)

where D is the diffusion constant. This solution
differs from the standard diffusion solution in that the
center of the distribution is moved by 1lt from the
source position along the incident direction. On
the other hand, our cumulant approximation (CUMA)
for photon density, exact up to the second-order
cumulant from the same source, is obtained as13,14

N�r, t� �
1

�4pDzzct�1�2
1

4pDxxct
exp

"
2

�z 2 Rz�2

4Dzzct

#

3 exp

"
2

�x2 1 y2�
4Dxxct

#
exp�2mact� , (4)

with the moving center located at

Rz � c�1 2 exp�2g1t���g1 . (5)

The corresponding diffusion coefficients are given by
© 2002 Optical Society of America
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Here gl � msc�1 2 al��2l 1 1��, where the single-
scattering phase function is expanded in Legendre
polynomials by

P �cos u� � �1��4p��
X
l

alPl�cos u� .

Two special values of gl are g0 � 0 and g1 � c�lt.
The original meaning of diffusion is a description of

a random process. As early as when Brownian motion
was first studied, researchers have known that under
random forces from the surrounding medium particles
will take a diffusion process, namely, spread from the
center outward. The diffusion coeff icient is a parame-
ter that characterizes the rate of spread, which can
be time dependent. The standard diffusion equation
with a diffusion constant is the simplest form with
which to describe these phenomena. The photon
propagation in a turbid medium is one example of the
random processes, which is more complicated than that
described by the standard diffusion equation, mainly
because the photons are injected with velocity along
a direction. This leads to photon propagation from
ballistic to snakelike and then to the diffusive mode.
The diffusion coeff icient in this process should be time
dependent.

The fundamental time-independent parameters
of the medium are the scattering coeff icients, the
absorption coeff icients, and the phase function in the
radiative transfer equation, because they have definite
meaning from a microscopic viewpoint. When regard-
ing the diffusion constant as a physical parameter, we
should note that this concept is not original but is a
secondary quantity that is derived by use of an
approximate method. Of course, these two meanings
of a diffusion coefficient are not incompatible. When
a standard diffusion equation is approximately valid,
the diffusion constant is correct according to both
meanings.

Although the Gaussian distribution in Eq. (4) is an
approximation because it cuts into the second-order cu-
mulant, Eqs. (6) and (7) provide an exact description of
the half-width of the real distribution.
Figure 1 shows the diffusion coefficients from
CUMA, Dzz and Dxx [Eqs. (6) and (7)], as a function of
time, where gl are calculated by Mie theory17 assum-
ing (for this f igure) that the homogeneous scattering
medium consists of water droplets with r�l � 1
uniformly distributed in air, with r the radius of
the droplet, l the wavelength of light, and index of
refraction m � 1.33. The anisotropic factor for this
case is a1�3 � 0.8436.

At t ! `, the photon density in Eq. (4) approaches
Eq. (3), where the diffusion coeff icients Dzz and Dxx
approach D � 1�3ms

0, not Eq. (1). This means that
Eq. (1) for a diffusion coeff icient that depends on
absorption leads to an incorrect result even for an
infinite time limit. On the other hand, the central-
limit theorem claims that the obtained Gaussian
distribution would be accurate after a large number of
collisions. Hence, Eq. (3) with D � 1�3ms

0 provides
an accurate solution of photon transport in an infinite
homogeneous medium at an infinite time limit, no mat-
ter whether absorption is strong or weak. At f inite
times, the diffusion coefficient is always smaller than
its value at infinite time. In fact, at early time t ! 0,
the center moves as ctẑ and the diffusion coeff icient
approaches zero. This result presents a clear picture
of nearly ballistic motion at t ! 0. With an increase
in time, the motion at the center slows down, and
the diffusion coeff icient increases from zero. This
stage of photon migration is in the snakelike mode.
For a large period of time, Eq. (4) approaches the
center-moved diffusion solution. As shown in Eqs. (6)
and (7), the time-dependent diffusion coefficient is
determined only by the scattering parameters gl and
is unrelated to the absorption coeff icient ma. Hence,
to f it data of numerical simulation or experiments at
finite time, one should not use Eq. (1) to reduce the
diffusion coeff icient.

The Aronson and Corngold paper10 emphasizes
that the time-independent diffusion equation rather
than the time-dependent equation should be examined
to determine which form of diffusion coeff icient is
correct. The time-independent solution can be ob-
tained by integration of the time-dependent solution
over time. Integration of Eq. (3) over time yields
the time-independent diffusive solution in an infinite
homogeneous medium:

Fig. 1. Diffusion coeff icients Dzz and Dxx from Eqs. (6)
and (7) as a function of time t.
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Fig. 2. Steady-state photon density as a function of dis-
tance from the source (along the incident direction) for dif-
ferent absorption coeff icients ma with unit 1�lt obtained
with the CMDA and the CUMA. The unit of length is lt;
the unit of time is lt�c.

N�r� �
1

4pDcjr 2 ltẑj
exp�2jr 2 ltẑj �ma�D�1�2� . (8)

A more accurate steady-state distribution N�r� in an
infinite homogeneous medium can be obtained by inte-
gration of Eq. (4) over time from t � 0 to t � `. Fig-
ure 2 shows N�r� as a function of r with the detector
set at �0, 0, r� for different absorption coeff icients ma.
The dashed curves were obtained from Eq. (8) with
D � lt�3, and the solid curves were obtained by in-
tegration of our time-dependent cumulant solution in
Eq. (4) over time, with the corresponding diffusion coef-
ficients given by Eqs. (6) and (7). When the detector is
near the source, the photon density from CUMA is dis-
tinctly smaller than that from Eq. (8). This happens
because early time photons play an important role, and
the diffusion approximation fails when it is near the
source. With an increase in distance between source
and detector, the results from the CMDA and CUMA
approaches are in agreement for different absorption
coeff icients. These results confirm that the diffusion
coefficient should be D � lt�3 at the diffusion limit
independently of absorption.

In conclusion, our analytical solution of the time-
dependent photon density in an infinite homogeneous
medium supports the claim that the diffusion coeffi-
cients is independent of absorption but is temporally
dependent.
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