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Photon migration in turbid media using a cumulant approximation to radiative transfer

M. Xu,* W. Cai, M. Lax, and R. R. Alfano
Institute for Ultrafast Spectroscopy and Lasers, New York State Center of Advanced Technology for Ultrafast Photonics

and Department of Physics, The City College and Graduate Center of City University of New York, New York, New York 100
~Received 1 August 2001; published 18 June 2002!

A photon transport model for light migration in turbid media based on a cumulant approximation to radiative
transfer is presented for image reconstruction inside an infinite medium or a bounded medium with a planar
geometry. This model treats weak inhomogeneities through a Born approximation of the Boltzmann radiative
transfer equation and uses the second-order cumulant solution of photon density to the Boltzmann equation as
the Green’s function for the uniform background. It provides the correct behavior of photon migration at early
times and reduces at long times to the center-moved diffusion approximation. At early times, it agrees much
better with the result from the Monte Carlo simulation than the diffusion approximation. Both approximations
agree well with the Monte Carlo simulation at later times. The weight function for image reconstruction under
this proposed model is shown to have a strong dependence at both early and later times on absorption and/or
scattering inhomogeneities located in the propagation direction of and close to the source, or in the field of
view of and close to the detector. This effect originates from the initial ballistic motion of incident photons,
which is substantially underestimated by the diffusion approximation.

DOI: 10.1103/PhysRevE.65.066609 PACS number~s!: 42.25.Dd, 05.60.Cd, 42.30.Wb, 02.70.Uu
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I. INTRODUCTION

Photon migration in turbid media is a random walk
which rays or photons traverse a medium of scatterers
absorbers, and undergo multiple scattering and absorp
events before escaping. A natural framework to deal with
type of problem is provided by the theory of radiative tran
fer in Chandrasekhar’s classic text@1#. The linear Boltzmann
equation governs the radiation field in a medium that
sorbs, emits, and scatters radiation@2#. Because the Boltz-
mann equation is a nonseparable, integro-differential eq
tion of first order for which an exact closed-form solution
not known except for a few special cases, various appr
mations have been devised@1,3,4#. The most common ap
proximation is the diffusion approximation, which corr
sponds to the lowest-order truncation in the spher
harmonic expansion of the photon distribution function.
follows from the Boltzmann equation under the assumpt
that the photon distribution is almost isotropic after a su
cient large number of scattering events, and thus provide
asymptotic approximation applicable to later times@5#. The
diffusion approximation is invalid when the incident photo
still retains its directionality preference. Moreover, appro
mations using higher-order truncation in the spherical h
monic expansion of the photon distribution function are s
inefficient in describing the ballistic movement of photons
early times@6#. Yoo et al. @7# reported that the diffusion ap
proximation fails for small and intermediate scatteri
ranges. The range of failure is proportional to the transp
mean free pathl t5 l s /(12g) wherel s is the scattering mean
free path andg is the scattering anisotropy~the average co-
sine of the scattering angle!. For one important class of ap
plications of photon migration in a turbid medium—th
medical applications, the medium has a strongly pea
phase function in the forward direction and a typical tra
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port mean free pathl t;1mm for human breast tissue. Th
diffusion approximation is thus incorrect for a substant
scattering range. In optical tomography@8–13# where the
distribution of inhomogeneities inside a highly scatteri
medium is reconstructed from measurements of the trans
ted light surrounding the medium, the diffusion approxim
tion yields a much underestimated weight function when a
separation between the source, the inhomogeneity, and
detector is small. This error may distort the signal from t
inhomogeneity inside the medium because the weight fu
tion near surface is usually much larger than that inside.

Recently, an analytical solution to the Boltzmann equat
was derived by the authors in an infinite uniform mediu
using a cumulant expansion@14,15#. An exact but formal
solution to the Boltzmann equation yields the photon dis
bution functionI (r ,s,t) at positionr , directions, and timet,

I ~r ,s,t !5K dF r2cE
0

t

s~ t8!dt8Gd~s~ t !2s!L , ~1!

for a sourced(r2r0)d(s2s0)d(t), where^& means an en-
semble average in photon direction space. Equation~1! is
evaluated in Fourier space with the use of the well-kno
cumulant expansion theorem@16#. An algebraic closed form
of expression is obtained for an arbitrarynth order cumulant.
This expansion is inherently different from the spherical h
monics expansion of the photon distribution. The first-ord
cumulant calculation determines theexactcenter position of
the photon distribution; the second-order cumulant calcu
tion determines theexacthalf width of the photon distribu-
tion in addition; higher-order cumulant calculations provi
progressively more details of the shape of the photon dis
bution but do not modify the cumulants of lower order. Th
is a major advantage of the cumulant expansion. The pho
distribution approaches a Gaussian distribution as the n
ber of scattering events increases according to the ce
limit theorem @16#. So it is not surprising that the second
order cumulant solution with a correct center position a
©2002 The American Physical Society09-1
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half-width has already provided a clear picture of the tim
evolution of photon migration from the initial ballistic to th
final diffusive regime—that photons migrate with a cen
that advances in time, and with an ellipsoidal contour t
grows and changes shape@14#.

The cumulant solution depends explicitly on the pha
function of the medium and involves a complicated nume
cal integration over angular parameters to build a forw
model. It is inconvenient for direct use in image reconstr
tion. An approximate form of the second-order cumulant
lution relating the scattered wave field directly to the we
inhomogeneities in an infinite space was later proposed
the authors@17#, which retains the main features of photo
propagation at both early and later times and reduces to
conventional diffusion approximation at later times.

In this paper, we will first extend the second-order cum
lant solution to planar geometries~semi-infinite and slab me
dia! after a brief recount of the main results of the cumula
solution to the Boltzmann equation in an infinite space. T
result of Monte Carlo simulations is then presented for b
infinite and semi-infinite media to verify the behavior of th
second-order cumulant solution at both early and later tim
The weight function for image reconstruction of weak inh
mogeneities is calculated with use of the simplified cumul
and diffusion approximations for semi-infinite and slab m
dia. The results from the two approximations are compa
The advantage of this model over the diffusion approxim
tion is then discussed.

II. THEORY

The Boltzmann equation for photon distribution functio
I (r ,s,t) at position r , direction s, and time t from a unit
source at positionr0 propagating alongs0 at time t50, is
given by

]

]t
I ~r ,s,t !1cs•“ r I ~r ,s,t !1c@ms~r !1ma~r !#I ~r ,s,t !

5cms~r !E ds8P~s,s8!I ~r ,s8,t !ds8

1d~r2r0!d~s2s0!d~ t !, ~2!

wherec is the speed of light inside the medium,ma andms
denote the position-dependent absorption and scattering
efficients, andP(s,s8) is the normalized phase function o
the light propagation in the medium. The known phase fu
tion is assumed to depend only on the scattering angles•s8,
and is then expandable in Legendre polynomials,

P~s,s8!5~4p!21(
l

alPl~s•s8!. ~3!

Equation~2! is nonseparable. However the evolution
direction space,F(s,tus0)exp(2ma ct) 5*d3r I (r ,s,tur0 ,s0),
obeys a separable equation with the solution@14#

F~s,tus0!5~4p!21(
l

~2l 11!exp~2glt !Pl~s•s0!. ~4!

Here gl5cms@12al /(2l 11)#, especially g050 and g1

5cms8 where ms8 is the reduced scattering coefficient. Th
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formal solution to the Boltzmann equation, Eq.~1!, is then
evaluated by~1! expressing its firstd function of positionr
as an integral of exp@ik•(r2c*0

t s(t8)dt8)# over k in the
Fourier space,~2! making a cumulant expansion of the latte
and~3! calculating the cumulants in the direction space w
use of the exact Green’s functionF(s,tus0) @15#.

An arbitrary order of cumulant solution can be calculat
@15# with higher-order cumulants providing progressive
more details about the photon distribution. Because the p
ton distribution approaches a Gaussian distribution when
number of the scattering events increases regardless o
details of the scattering, a second-order cumulant solutio
sufficient at later times. At early times, the photons’ spread
narrow compared to the resolution of the detector, hence
detailed shape is less important than the correct position
half-width of the beam. We emphasize the center of the
sition and half-width obtained from the second-order cum
lant solution isexactand will not be altered by higher orde
cumulant solutions.

The second-order cumulant solution of the photon den
N(0)(r ,tur0 ,s0)5*dsI (0)(r ,s,tur0 ,s0) for an incident source
propagating along the positivez axis (s05 ẑ) in a uniform
medium, is given by@14#

N(0)~r ,tur0 ,s0!5
1

~4pDzzct!1/2

1

4pDxxct

3expH 2
~z2z02Rz!

2

4Dzzct J
3expH 2

~x2x0!21~y2y0!2

4Dxxct J
3exp~2mact! ~5!

with a moving center located at

Rz5 l t@12exp~2ct/ l t!# ~6!

and the diffusion coefficients

Dxx5Dyy

5
c

3t H t

g1
1

g2@12exp~2g1t !#

g1
2~g12g2!

2
12exp~2g2t !

g2~g12g2! J ,

Dzz5
c

3t H t

g1
2

~3g12g2!@12exp~2g1t !#

g1
2~g12g2!

1
2@12exp~2g2t !#

g2~g12g2!
2

3@12exp~2g1t !#2

2g1
2 J . ~7!

For simplicity, we use the following approximation to th
second-order cumulant solution as the background pho
distribution,I (0)(r ,s,t), in an infinite uniform medium@17#,

I (0)~r ,s,tur0 ,s0!5N(0)~r ,tur0 ,s0!F~s,tus0!

2
3

4p
D~ t !s•“ rN

(0)~r ,tur0 ,s0! ~8!

in building the photon transport model for image reconstr
9-2
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tion where the time-dependent diffusion coefficientD(t) is
taken to be an averageD(t)5(Dxx1Dyy1Dzz)/3 of the dif-
fusion coefficient ellipsoid. At early timest→0, the first
term of Eq. ~8! dominates, andF(s,tus0)→d(s2s0), D(t)
→c2t2ms8/9→0, N(0)(r ,tur0 ,s0)→d(r2r02c(t2t0)s0),
thus I (0)(r ,s,tur0 ,s0) provides a correct picture of ballisti
motion of photons with speedc along the incident direction
on
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s0. At later times,F(s,tus0)→(4p)21, D(t)→(3ms8)
21, Eq.

~8! reduces to the photon distribution of the center-mov
diffusion approximation@8#.

For weak inhomogeneities,dma(r ) and dms8(r ), embed-
ded in an otherwise uniform medium, a first-order Born a
proximation to Eq.~2! yields the change in the photon dis
tribution @17#
dI ~r ,s,tur0 ,s0!52
1

4pE dt8E dr 8cdma~r 8!N(0)~r 8,t2t8ur ,2s!N(0)~r 8,t8ur0 ,s0!1
3c

4pE dt8E dr 8D~ t2t8!D~ t8!

3@dma~r 8!1dms8~r 8!#“ r8N
(0)~r 8,t2t8ur ,2s!•“ r8N

(0)~r 8,t8ur0 ,s0!1
3c

4pE dt8E dr 8D~ t2t8!

3@dma~r 8!1dms8~r 8!#exp~2cms8t8!$N(0)~r 8,t8ur ,2s!s•“ r8N
(0)~r 8,t2t8ur0 ,s0!

2s0•“ r8N
(0)~r 8,t2t8ur ,2s!N(0)~r 8,t8ur0 ,s0!% ~9!
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after neglecting fast decaying terms involving exp(22glt) for
l>1. We should point out that the optical reciprocity relati
is satisfied by both the photon density Eq.~5! and the photon
distribution Eqs.~8! and ~9!. At later times, the term in Eq
~9! containing the exponential decay factor exp(2cms8t8) can
be neglected, the change in photon density, 4pdI (r ,s,t), in
the diffusive limit, is reduced to that in the diffusion approx
mation „Eq. ~14! in Ref. @18#….

The restriction of D(t) by taking an average o
Dxx , Dyy , and Dzz can be relaxed. The diffusion coeffi
cients Dxx5Dyy and Dzz can be used instead. The on
change is to replace all the occurrences of the fo
of D(t)“ r8N

(0)(r ,tur0 ,s0) to

Dxx~ t !~ x̂]/]x1 ŷ]/]y!N(0)~r ,tur0 ,s0!

1Dzz~ t !ẑ]/]z8N(0)~r ,tur0 ,s0!

in both Eqs.~8! and ~9!.

A. Extension to planar geometries

When the scattering medium is bounded, special con
tions are needed to set the photon density at the interfa
The reflection at the interface reinjects the light into the m
dium. Using a partial current technique, Zhuet al. @19#
showed that the boundary condition for a semi-infinite m
dium can be written as

FN(0)2ze

]N(0)

]z G
z50

50 ~10!

at the interfacez50 where
i-
es.
-

-

ze5
2l t

3

12Reff

11Reff
. ~11!

Here Reff is the effective reflectivity at the interface dete
mined by the Fresnel reflection coefficients. The extrapo
tion length ze measures the distance outside the medi
where the energy density from the diffusion approximati
vanishes linearly. A recent study by Popescuet al. @20# has
also shown the dependence of the extrapolation length on
scattering anisotropy.

The extrapolated-boundary condition has been succ
fully employed for planar geometries such as a slab o
semi-infinite medium in diffuse imaging, in which the pho
ton density is set equal to zero at an extrapolated bound
located a distanceze outside the turbid medium@8,21,22#.
The method of images is used to obtain the Green’s func
in such bounded media. The same technique can be ap
here to the Green’s functionN(0)(r ,tur0 ,s0).

Keeping in mind that the source approaches gradually
stops finally atr01s0l t on average with the increase of tim
the image of the incident point source at (x0 ,y0 ,z0>0)
propagating along the positivez axis inside a semi-infinite
medium with its interface atz50 is a negative one a
(x0 ,y0 ,2z022ze22l t) propagating along the same dire
tion ~Fig. 1!. At early times, both the source and its ima
have not arrived at the extrapolated boundary and their c
tributions at the extrapolated boundary can be neglec
When the time increases, the contributions at the extra
lated boundary from both the source and image tend to c
cel each other as both approach their final stops~shadow
spots in Fig. 1!. The shadow spots just represent the positio
of the source and its image in the center-moved diffus
approximation. The Green’s function of a semi-infinite m
dium given by
9-3
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Nsemi
(0) ~r ,tur0 ,s0!5N(0)~r ,tux0 ,y0 ,z0 ,s0!

2N(0)~r ,tux0 ,y0 ,2z022ze22l t ,s0!

~12!

thus approximately satisfies the extrapolated-boundary c
dition.

The same procedure can be easily applied to a slab
its extrapolated boundaries atz50 andz5L. The images of
an incident source at (x0 ,y0 ,z0) with 0<z0<L propagating
along positive or negativez axis (sz561) are a set of posi-
tives images at (x0 ,y0 ,z012nL) and a set of negative one
at (x0 ,y0 ,2z22nL22szl t), all propagating along the sam
direction as the source (2`,n,` is integer!.

B. Comparison with the Monte Carlo simulation

We will compare the photon densities computed by
diffusion approximation~DA!, the cumulant approximation
~CA! Eqs.~5! and~8!, and the Monte Carlo method~MC! for
an incident collimated pulse first in an infinite space and th
in a semi-infinite space. In DA, the incident photons are
sumed initially scattered isotropically at a depth of one tra
port mean free path into the medium as used by Patte
et al. @8#. No such adjustments are performed in CA. T
Monte Carlo code is adapted from Prahlet al. @23# and Wang
et al. @24#. Photons are launched one by one into the m
dium. Each photon~regarded as a packet! starts from the
origin of the coordinate system and the first scattering ev
takes place along the positivez axis. The step size~distance
between consecutive scattering events! is sampled from an
exponential distribution characterized by the total attenua
mT5ms1ma , following Beer’s law. After each propagatio
step, the photon packet is split into two parts—a fract
(ma /mT) is absorbed and the rest scattered. The new pro
gation direction after scattering~three directional cosines! is
sampled by assuming a Henyey-Greenstein phase func
@25#. The effect of internal reflection is included in this cod
The technique of roulette@26# is used to terminate a photo

FIG. 1. The incident source at position (x0 ,y0 ,z0>0) and its
image source at (x0 ,y0 ,2z022ze22l t) propagating along the
positivez axis in a semi-infinite medium (z>0) with its interface at
z50. The source and its image move from their original positio
~dark spots! to their final stops~shadow spots! at later times.
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packet to improve the efficiency of the calculation witho
introducing a bias. The results in the following paragrap
have been scaled to use the transport mean free pathl t as the
unit of the length and the flight time for one transport me
free path in the mediuml t /c as the unit of the time. The
source is incident along the positivez axis at the origin in
space and time. 53106 photons are used in one run of th
Monte Carlo simulation.

The first- and second-order cumulants~the center position
and the half-width of the ‘‘photon cloud’’! of our cumulant
solution Eq.~5! is

^x~ t !&5^y~ t !&50, ^z~ t !&5 l t@12exp~2ct/ l t!#,

A^Dx~ t !2&5A^Dy~ t !2&5A2Dxx~ t !ct,

A^Dz~ t !2&5A2Dzz~ t !ct, ~13!

where^& means an ensemble average of photon positions
specified time. This theoretical prediction can be easily ve
fied by a Monte Carlo simulation. Figure~2! shows the first
two cumulants of photons for an incident pulse along thz
axis at time zero into an infinite medium with anisotropy 0
A perfect agreement on the center position~the first-order
cumulant! and the half-width~the second order cumulant! of
the photon distribution between our theoretical result and
Monte Carlo simulation is obtained. The half-widths alo
xyz directions are very close; the value alongz direction is a
bit larger than that along thexy direction as predicted by Eq
~13!.

Figures 3~a!–3~c! shows the photon density at position
(0,0,3l t), (0,0,6l t), and (0,0,10l t) computed by all three dif-
ferent methods for the same infinite medium. At a distance
3l t , the time profile of photon density from the cumula
approximation agrees much better to the Monte Carlo re
than DA by providing a correct peak position of photon de
sity. Some amount of photons arriving faster than the sp
of light still exist in this second-order cumulant calculatio
However, this is already a big improvement compared
DA. The result from CA can be further improved whe
higher-order cumulants are used. At a larger distance, all

s

FIG. 2. The center position and the half-width of the phot
cloud inside a uniform infinite absorptionless medium with anis
tropy equal to 0.9.
9-4
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PHOTON MIGRATION IN TURBID MEDIA USING A . . . PHYSICAL REVIEW E65 066609
FIG. 3. Photon density at positions~a! (0,0,3l t), ~b! (0,0,6l t),
and~c! (0,0,10l t) vs time normalized to a unit source in an infini
medium. The source is incident along the positivez axis at the
origin of the coordinate system and at time zero. The three cu
are computed by the diffusion approximation~DA!, the cumulant
approximation~CA!, and the Monte Carlo method~MC!, respec-
tively.
06660
es
FIG. 4. Photon density at positions~a! (0,0,3l t), ~b! (0,0,6l t),

and ~c! (0,0,10l t) vs time normalized to a unit source in a sem
infinite medium. The source is incident normal to the surface of
medium and along the positivez axis at the origin of the coordinate
system and at time zero.
9-5



long the

M. XU, W. CAI, M. LAX, AND R. R. ALFANO PHYSICAL REVIEW E 65 066609
FIG. 5. The backscattered photon intensityI (r ,2 ẑ,t) at positions~a! (0,l t,0) and~b! (0,2l t,0) on the boundary of a semi-infinite medium
vs time normalized to a unit source in a semi-infinite medium. The source is incident normal to the surface of the medium and a
positivez axis at the origin of the coordinate system and at time zero.
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three methods begin to agree with each other pretty well
the cumulant approximation is better than the diffusion
proximation. The difference between results from DA, C
and MC is negligible when the distance is 10l t or larger.

The calculations using DA, CA, and MC are perform
again for a semi-infinite medium with its boundary atz50,
whose optical parameters are taken to be the same a
above infinite medium. The source is incident at the origin
the coordinate system and along the positivez axis ~normal
to the surface! at time zero. The effective reflectivity is take
to be zero and an extrapolation lengthze50.7l t is used in
both DA and CA calculations. Figures 4~a!–4~c! shows the
corresponding results for this example. Again CA show
much better agreement to the MC than DA. Compared w
Fig. 3 for the infinite case, the tail of the profiles in Fig
4~a!–4~c! for the semi-infinite medium is lower due to th
presence of an extra negative image source coming from
boundary condition.

As a final example, the backscattered photon inten
I (0)(r ,2 ẑ,t) at positions (0,l t,0) and (0,2l t,0) on the bound-
ary of the above semi-infinite medium is calculated with u
of the three different methods~see Fig. 5!. In DA, photons
diffuse from the adjusted source position (0,0,l t) with the
constant diffusion coefficientD5 l t/3. In CA, back-scattered
photons arrive later because the center of photons mo
06660
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forward along the positivez direction and diffuse from the
moving center with a gradually increasing diffusion coef
cient from 0 tol t/3. CA agrees well with the Monte Carlo
simulation.

C. Weight function for image reconstruction

The response~the change of the scattered wave field! to a
unit absorption or scattering inhomogeneity is usually cal
the weight function or the Jacobian in medical tomograp
literature. This quantity plays a central role in image reco
struction regardless of which method is used to obtain
inhomogeneity distribution in a medium. Let us rewrite E
~9! in the following form:

4pdI ~r ,s,tuz0 ,s0!52cE dr 8dma~r 8!wa~r ,s,r0 ,s0 ,t;r 8!

1
c

3ms8
2E dr 8dms8~r 8!

3ws~r ,s,r0 ,s0 ,t;r 8! ~14!

with the absorption and scattering weight functions defin
as
wa~r ,s,r0 ,s0 ,t;r 8!5E
0

t

dt8N(0)~r 8,t2t8ur ,2s!N(0)~r 8,t8ur0 ,s0!2ws~r ,s,r0 ,s0 ,t;r 8!/~3ms8
2!

ws~r ,s,r0 ,s0 ,t;r 8!

9ms8
2

5E
0

t

dt8D~ t2t8!D~ t8!“ r8N
(0)~r 8,t2t8ur ,2s!•“ r8N

(0)~r 8,t8ur0 ,s0!1E
0

t

dt8D~ t8!

3exp@2cms8~ t2t8!#N(0)~r 8,t2t8ur ,2s!s•“ r8N
(0)~r 8,t8ur0 ,s0!2E

0

t

dt8D~ t2t8!

3exp~2cms8t8!s0•“ r8N
(0)~r 8,t2t8ur ,2s!N(0)~r 8,t8ur0 ,s0!, ~15!
9-6
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respectively.
As N(0)(r ,tur0 ,s0)→d(r2r02cts0) whent→0, special attentions must be paid when a numerical integration is carrie

for Eq. ~15!. The range of integration is divided into three areas: (0,D), (D,t2D), and (t2D,t) where t@D.0. The end
corrections from the integration over (0,D) and (t2D,t) to the weight functions integrated over (D,t2D) range are approxi-
mately given by

ea~r ,s,r0 ,s0 ,t;r 8!5
1

c
N~r 8,tur ,2s!d~x82x0!d~y82y0!H~D2j!H~j!1

1

c
N~r 8,tur0 ,s0!d~x82x!d~y82y!H~D2h!H~h!

2es~r ,s,r0 ,s0 ,t;r 8!/~3ms8
2!,

es~r ,s,r0 ,s0 ,t;r 8!

9ms8
2

52
D~ t !

c S 12
]D~ t !

c]t U
t5j

D s0•“ r8N~r 8,tur ,2s!d~x82x0!d~y82y0!H~D2j!H~j!1
D~ t !

c

3S 12
]D~ t !

c]t U
t5h

D s•“ r8N~r 8,tur0 ,s0!d~x82x!d~y82y!H~D2h!H~h!, ~16!
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wherer 85r01cjs05r2hcs is the position of the inhomo
geneity, s and s0 are assumed to be along the positive
negativez axis, andH is the Heaviside function. In the fol
lowing calculations, the refractive index of the medium
assumed to be 1.33; the absorption and scattering coeffic
of the medium are assumed to be 0.003 mm21 and
10 mm21, respectively, and the scattering anisotropy 0
providing a transport mean free pathl t51 mm. The offsetD
is taken to be 0.1 ps when more than 99% of the pho
packet still concentrates within a cubic volume (0.01l t)

3.
The weight function from a cubic of volume (0.01l t)

3 is
calculated using the DCUHRE algorithm@27#.

The weight functions for a semi-infinite medium a
shown in Fig. 6 for absorption and scattering inhomoge
ities. The backscattered photons~propagating along negativ
z axis! are detected by a detector placed at a posit
(0,2l t,0), off two transport mean free path from the sour
Figures 6~a! and 6~c! show the response to an inhomogene
at (0,0,z) positions which is in the propagation direction
the source at delay 50 ps and 500 ps. The CA shows a m
stronger response from the inhomogeneity in the propaga
direction of and close to the source than the diffusion
proximation. Both absorption and scattering weight functio
from CA reveal a peak at about 0.03l t . This peak originates
from the initial ballistic motion of the incident photon. In
short time after the photon is launched (t→0), the photon
packet will be positioned atz* 5ct with a spread of half-
width 'A4D(t)ct52ctAct/(3l t), hence the presence of a
absorption or scattering inhomogeneity at position (0,z
,z* ), sitting in the ballistic path of the photon, will signifi
cantly reduce the number of backscattered photons rece
by the detector@wa.0 andws,0 in Eq.~14!#. In Figs. 6~b!
and 6~d! where the inhomogeneity is placed at (0,l t ,z) mm
positions, not sitting in the ballistic path of the photon, th
peak is gone.

The diffusion approximation is invalid when the inhom
geneity is too close to the source or the detector. Never
less, the weight function from DA is plotted over the fullz
06660
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nts

,
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n
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n
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ed
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range for comparison. A peak is found in the absorpt
weight function @Fig. 6~a!# and a crossing of zero in th
scattering weight function@Fig. 6~c!# at z5 l t , because of the
artificial adjustment of the source position to one transp
mean free path into the medium and the singularity of
Green’s function in DA when the inhomogeneity and t
source overlap.

A larger disagreement between CA and DA is observed
the scattering weight function than in the absorption wei
function. The absorption weight functions from CA and D
agree with each other relatively well except for a region
depth ofl t near the surface when the inhomogeneity is in
propagation direction of the source, or in the field of view
the detector. The scattering weight functions from CA a
DA disagree significantly within the region of depth of
least 2l t close to the surface. The deepest position that can
detected by the detector at timet is roughlyct/2. This con-
dition is better observed by CA because CA shows a fa
decay rate of both the absorption and scattering weight fu
tions with the increase of the depth@Figs. 6~a!–6~d!#.

The absorption and scattering weight functions for a s
is shown in Fig. 7. The slab has the same optical param
as the semi-infinite medium. The thickness of the slab id
530l t . The source is at the origin (0,0,0). The detector
placed on the opposite side of the slab, (0,0,30l t), in the
propagation direction of the source. The weight functions
the cumulant approximation and the diffusion approximat
are strictly symmetric about the planez5d/2. The agreemen
between CA and DA for the absorption weight function
better than for the scattering weight function. Both CA a
DA produce close results for the inhomogeneity not loca
near the boundary. When the inhomogeneity is placed al
the line (0,0,z), in the propagation direction of the sourc
and in the field of view of the detector, two peaks at abo
0.03l t andd20.03l t appear in CA; two peaks in the absor
tion weight function@Fig. 7~a!# and two crossings of zero in
the scattering weight function@Fig. 7~c!# appear in DA atl t
andd2 l t .
9-7
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FIG. 6. Weight functions for a semi-infinite medium where the inhomogeneity is~a! absorption and~c! scattering at (0,0,z), in the
propagation direction of the source;~b! absorption and~d! scattering at (0,l t ,z), off by one transport mean free path. Profiles at two de
timest550 ps andt5500 ps are plotted for both the cumulant approximation~CA! and the diffusion approximation~DA!. The insets replot
the weight functions in a logarithm scale.
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III. DISCUSSION

We attribute the formation of a peak very close to t
surface but not on the surface~about 0.03l t into the medium!
of the absorption and scattering weight function in the cum
lant approximation to the initial ballistic motion of the inc
dent photon. The photon penetrates into the medium with
initial speed ofc and with its center approaching and sto
ping at one transport mean free path into the medium. He
the effect is only significant when the inhomogeneity is
the propagation direction of the source or in the field of vi
of the detector, and the peak response shifts away from
surface of the medium.

The diffusion approximation requires one to adjust t
position of the source to compensate for the initial ballis
motion of the photon@8,28,29#. From our more accurate re
sult Eq. ~9!, the source and the detector terms appear i
form of N(0)(r 8,tur ,2s) andN(0)(r 8,tur0 ,s0), respectively.
The source and the detector approach gradually and sto
r01 l ts0 and r2 l ts, respectively, with the increase of tim
06660
-

n

ce

he

a

at

wheres0 ands are the propagating directions of the incide
and outgoing photon. The positioning of both the source a
the detector for one transport mean free path into the
dium is hence mandatory if the diffusion approximation
used. The curves for DA in Figs. 6 and 7 are calculated us
this adjustment. The DA will deviate from the CA signifi
cantly over the full range of depth if the adjustment on t
position of the source or the detector is not performed.

The diffusion approximation for image reconstructio
substantially underestimates the contribution to the emiss
measurement from the inhomogeneity in the propagation
rection of and close to the source, or in the field of view a
close to the detector. This error may distort the signal fr
the inhomogeneity inside the medium because the we
function near surface is usually much larger than that ins
and may lead to a failure in image reconstruction. The h
response from the region near surface is not desirable w
the inhomogeneity inside the medium is to be detected in
transmission or backscattering measurements. The canc
9-8
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FIG. 7. Weight function for a slab where the inhomogeneity is~a! absorption and~c! scattering at (0,0,z), in the propagation direction o
the source,~b! absorption and~d! scattering at (0,l t ,z), off by one transport mean free path. Weight functions calculated from the cum
~CA! and diffusion~DA! approximations are plotted for time delays oft5300 ps andt51500 ps. The insets replot the weight functions
a logarithm scale.
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tion between multiple measurements using nearby wa
lengths may help reduce this effect.

Other attempts to obtain a better approximation to rad
tive transfer in turbid media were made by various auth
such as Ishimaru’s diffusion approximation@30,31#, the te-
legrapher equation of Durianet al. based on the two stream
theory @32#, Gershenson’s time-dependent equation in
diffusion limit using a higher-order angular expansion@6#,
and non-Euclidean diffusion equation of Polishchuket al.
@33#. The advantage of this cumulant approximation is tha
provides a clear picture of photon migration for an incide
collimated beam from early to later times and that it giv
the exactcenter and theexactspread of the photon cloud a
both early and later times by only using a second-order
mulant approximation.

In conclusion, we have presented a cumulant approx
ation to radiative transfer, which provides an analytical to
to describe photon migration at both early and later time
06660
e-

-
s

e

it
t
s

-

-
l

from the initial ballistic motion till the final diffuse regime
To a second-order cumulant, the solution agrees with
Monte Carlo simulation at later times and provides a corr
peak position in time for photon arrivals at early times,
both an infinite medium and a bounded medium with a p
nar geometry. The initial ballistic motion of photon produc
a strong peak in the response from absorption and/or sca
ing inhomogeneities, which are in the propagation direct
of and close to the source, or in the field of view of and clo
to the detector, at both early and later times.
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