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Anomalous diffraction of light with geometrical path statistics
of rays and a Gaussian ray approximation
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The anomalous-diffraction theory (ADT) of extinction of light by soft particles is shown to be determined by
a statistical distribution of the geometrical paths of individual rays inside the particles. Light extinction
depends on the mean and the mean-squared geometrical paths of the rays. Analytical formulas for optical
efficiencies from a Gaussian distribution of the geometrical paths of rays are derived. This Gaussian ray ap-
proximation reduces to the exact ADT in the intermediate case of light scattering for an arbitrary soft particle
and describes well the extinction of light from a system of randomly oriented and (or) polydisperse particles.
The implications for probing of the sizes and shapes of particles by light extinction are discussed. © 2003
Optical Society of America
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Anomalous-diffraction theory (ADT) which was in-
troduced by van de Hulst1 for light extinction and
scattering, is one of the simplest and most powerful
approximations of the interaction of electromag-
netic radiation with spherical and nonspherical soft
particles. This approach has been used in remote
sensing of cirrus clouds and climate research, in
biophysical and biomedical research, and in other
applications.2 The anomalous-diffraction theory is
based on the premise that the extinction of light by
a particle is primarily a result of the interference
between the rays that pass through the particle
with those that do not.3 This approximation is most
applicable to so-called soft particles with the complex
relative refractive index m near 1 �jm 2 1j ,, 1� and
with a characteristic dimension of size r exceeding
wavelength l of the incident radiation �2pr�l . 1� to
achieve a high degree of accuracy.3 –6 This accuracy
has been observed to improve with softness and non-
sphericity,6 and with polydispersity of the particle.3

In this Letter we show that ADT has a statistical in-
terpretation. The extinction of light by particles mea-
sures a probability distribution of the geometrical path
of the individual rays inside the particles rather than
the sizes and shapes of individual particles.

In the framework of ADT,1 the extinction, ab-
sorption, and scattering eff iciencies of a particle are
given by
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Qsca � Qext 2 Qabs , (1)

where � represents the real part, the wave number is
k � 2p�l for wavelength l, the complex relative re-
fractive index is m � mr 2 imi, l is the geometrical
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path of an individual ray inside the particle, and P is
the projected area of the particle in the plane perpen-
dicular to the incident light over which the integration
is performed. The optical eff iciencies for a system of
randomly oriented and (or) polydisperse particles are
averaged over all the sizes and orientations of particles
weighted by their projection areas, i.e.,

Q �

X
PQX
P

. (2)

The integration in Eq. (1) over the projected area
for a single particle at a fixed orientation or the av-
eraging in Eq. (2) over the combined projected area
from all sizes and orientations of particles can be rein-
terpreted as an averaging over a distribution of the
geometrical path l of rays. By dividing the (combined)
projection area into equal-area elements and counting
the resultant geometrical paths that correspond to each
projection area element according to their lengths, one
can find a probability function p�l�dl that describes
the probability that geometrical path l from a ray is
within �l, l 1 dl�. The probability function is normal-
ized to

R
p�l�dl � 1. By this interpretation, we can

rewrite the optical efficiencies in Eq. (1) as expected
values in accordance with probability distribution p�l�
of the geometrical paths of rays. The extinction and
absorption eff iciencies in Eq. (1) can be expressed as

Qext � 2�
Z

�1 2 exp�2ikl�mr 2 1��

3 exp�2klmi��p�l� dl ,

Qabs �
Z

�1 2 exp�22klmi��p�l� dl . (3)

Assume that the geometrical path distribution of rays
(in short, the ray distribution) for one particle with a
unit size is p0�l�; then the ray distribution for a par-
ticle with the same shape, orientation, and a different
size L is given by p�l� � �1�L�p0�l�L� from scaling of
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length. Thus, a system of such particles whose size is
distributed according to a probability-density function
n�x� has a ray distribution function

ppol�l� �

Z
�1�x�p0�l�x�n�x�x2 dx

Z
n�x�x2 dx

, (4)

weighted by the projection area of individual particles
that is proportional to x2. The subscript pol or rn is
used to denote a polydispersed particle or one that is
randomly oriented, respectively.

Let us consider a unit spheroid with a semisize b � 1
of the revolutional axis and an axial ratio e and with
an angle x between the propagation direction of the
incident beam and the revolutional axis of the spher-
oid. The geometrical length of a ray and the projection
area for such a spheroid have been calculated.5 The
geometrical path distribution of the rays can then be
found:
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where H �x� is a Heaviside function. The ray distribu-
tion for a system of such spheroids at a fixed orienta-
tion x with a log-normal size distribution,7
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is given by

ppol�l� �
�e22 sin2 x 1 cos2 x�l

4

3
erfc��1�

p
2s�ln��e22 sin2 x 1 cos2 x�1�2l�2am��

am
2 exp�2s2�

(7)

from Eq. (4), where erfc�x� is the complementary error
function. The ray distribution becomes

ppol, rn�l� �
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for such particles randomly oriented where the
projection area of the cylinder is proportional to
pe2�e22 sin2 x 1 cos2 x�1�2.5 It is worth noting here
that the ray distribution for a simple spheroid at a
fixed orientation [Eq. (5)] is triangular, regardless of
the axial ratio of the spheroid. This fundamental geo-
metrical characteristics facilitates a simple rescaling
of the radius to calculate the optical eff iciencies from
a sphere for a spheroid.5

The ray distributions from a single spheroid, a single
randomly oriented spheroid, a system of polydisperse
spheroids at a fixed orientation, and a system of
randomly oriented polydisperse spheroids are plotted
in Fig. 1. It is clear from the figure that the shape
characteristics of an individual particle are washed
out by the averaging over the polydispersity and the
orientation of the particle. The shape characteristics
of an individual particle are expected to be further
washed out if particles of different shapes are involved.
Thus the ray distribution p�l� of a system of particles
such as a bacterial suspension, biological cells, or cir-
rus clouds where particles are polydisperse, randomly
oriented, and (or) of multiple shapes approaches
a probability-density function p�l� that is charac-
terized essentially by the mean geometrical path
�l	 �

R
lp�l�dl and the mean-squared geometrical path

�l2	 �
R
l2p�l� dl of rays inside the particles. One

natural choice of p�l� here is the Gaussian probability-
distribution function, which follows the same spirit
as the well-known central-limit theorem.8 We should
point out that this choice does not satisfy p�l , 0� � 0,
but the contribution from near the l � 0 region in the
ray distribution is much smaller than that from other
regions and hence can be ignored.

Let us now assume that the ray distribution is given
by a Gaussian distribution:
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The extinction and scattering efficiencies are then
given by

Qext � 2 2 2 cos�k�mr 2 1� �m 2 ks2mi��
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Qabs � 1 2 exp�22kmi�m 2 kmis
2�� (10)

from Eqs. (3) after a straightforward integration.
The optical efficiencies [Eqs. (10)], in the intermediate
case limit �k�mr 2 1�l ,, 1 and kmil ,, 1, where l is
the geometrical path],9 reduce to

Qext � 2kmi�l	 1 k2��mr 2 1�2 2 mi
2� �l2	 ,

Qabs � 2kmi�l	 2 2k2mi
2�l2	 ,

Qsca � k2jm 2 1j2�l2	 , (11)

where the mean and the mean-squared geometri-
cal paths are given by �l	 � m and �l2	 � m2 1 s2,

Fig. 1. Ray distributions for a spheroid at a fixed orien-
tation x � 0 (FX), randomly oriented (RN), polydisperse
at a fixed orientation (POL FX), and randomly oriented
polydisperse (POL RN). The axial ratio of the spheroid is
(a) e � 2 and (b) e � 0.5. Log-normal size distribution
n�x� with am � 1 and s � 0.2 is also plotted as insets.
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Fig. 2. Extinction and absorption eff iciencies of (a) a
sphere and (b) a polydisperse sphere with a log-normal
radius distribution of am � 1 and s � 0.2 calculated with
Mie, ADT, and Gaussian ray approximations. Complex
refractive index, m � 1.05 2 i0.0005. The size distribu-
tion has already been shown as insets in Fig. 1.

respectively. These results agree exactly with those
for the intermediate region over which the Rayleigh–
Gans approximation and the anomalous-diffraction
approximation of light scattering from small particles
overlap.1,9 This means that Eqs. (10) from our Gauss-
ian ray approximation reduce to the exact ADT in the
intermediate case.

Figure 2 compares the extinction and absorption ef-
ficiencies calculated by the exact Mie theory, the exact
ADT [Eqs. (1) and (3)], and our Gaussian ray approxi-
mation [Eqs. (10)] for a weakly absorbing sphere and
a system of the same spheres with a log-normal radius
distribution [Eq. (6)] of am � 1 and s � 0.2. Both
our Gaussian ray approximation and the ADT, unlike
the exact Mie calculation, tend to underestimate the
optical eff iciencies. This fact is well known.10,11 The
absorption eff iciency from our Gaussian ray approxi-
mation agrees extremely well with the ADT; at most
it differs by 2% from the exact Mie calculation in this
comparison. The extinction eff iciency agrees well
with the exact Mie calculation in the intermediate re-
gion for both single spheres and polydisperse spheres,
as expected. The Gaussian ray approximation for
the polydisperse spheres approaches the exact ADT
calculation with maximum relative errors of 3.5%
compared to the ADT and of 7% compared to Mie
theory.

From our statistical analysis of the anomalous-
diffraction theory of light extinction, light extinction
depends solely on the probability distribution of the
geometrical paths of individual rays inside the
particles rather than on the size or the shape of an in-
dividual particle. Thus the optical efficiency equiva-
lence12 can easily be achieved from different-shaped
particles or particles of different size distributions
as long as they share a common geometrical path
distribution of rays.

The geometrical path distribution of rays can be
approximated by a Gaussian probability distribution
function for a system of particles in which the par-
ticles are randomly oriented, polydisperse, and (or)
multiple shaped. For such a system of particles the
light-extinction measurements essentially determine
the mean and the mean-squared geometrical paths
of rays from all particles in the system. The shape
and size of an individual particle can be deduced
only with a priori information on the shape and (or)
the size distribution of the particles involved. The
pursuit of the mean and the mean-squared paths
from fitting Eqs. (10) to experimental data, or the
general geometrical path distribution of rays p�l� of
particles from solving the inverse problem in Eqs. (3),
provides an alternative approach to particle sizing
and shaping. We note that we have restricted this
study to extinction of light from particles of the
same type (a common refractive index, m). This
statistical interpretation of ADT opens a new way
to calculate optical eff iciencies of soft particles of
different shapes by use of the probability distribution
of the geometrical paths of individual rays inside
particles.
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