Three-dimensional localization and optical
imaging of objects in turbid media with
independent component analysis
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A new approach for optical imaging and localization of objects in turbid media that makes use of the
independent component analysis (ICA) from information theory is demonstrated. Experimental arrange-
ment realizes a multisource illumination of a turbid medium with embedded objects and a multidetector
acquisition of transmitted light on the medium boundary. The resulting spatial diversity and multiple
angular observations provide robust data for three-dimensional localization and characterization of
absorbing and scattering inhomogeneities embedded in a turbid medium. ICA of the perturbations in the
spatial intensity distribution on the medium boundary sorts out the embedded objects, and their locations
are obtained from Green’s function analysis based on any appropriate light propagation model. Imaging
experiments were carried out on two highly scattering samples of thickness approximately 50 times the
transport mean-free path of the respective medium. One turbid medium had two embedded absorptive
objects, and the other had four scattering objects. An independent component separation of the signal, in
conjunction with diffusive photon migration theory, was used to locate the embedded inhomogeneities. In
both cases, improved lateral and axial localizations of the objects over the result obtained by use of
common photon migration reconstruction algorithms were achieved. The approach is applicable to
different medium geometries, can be used with any suitable photon propagation model, and is amenable

to near-real-time imaging applications. © 2005 Optical Society of America
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1. Introduction

Optical tomographic imaging of objects in turbid me-
dia is an aggressively pursued area of contemporary
research that derives impetus from a variety of po-
tential practical applications.’-17 Of particular inter-
est are medical applications in which optical
tomography and spectroscopy have the potential to
provide diagnostic information about tumors in
breast and prostate tissue and functional information
about brain activities. Simultaneous developments in
experimental apparatus and techniques for object in-
terrogation and signal acquisition,245:18.19 gnalytical
models for light propagation,10.20-22 and computer al-
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gorithms for image reconstruction®-8 hold promise for
realization of these potentials of optical tomography.

Researchers today use continuous-wave, amplitude-
modulated, or ultrashort light pulses to probe the
target(s) embedded in the turbid medium and obtain
steady-state, frequency-domain, or time-varying op-
tical signals, respectively, by using a variety of detec-
tion schemes.245.18.19 Multiple scattering of light in
turbid media, such as breast tissue, precludes direct
imaging of embedded targets. One then resorts to an
inverse image reconstruction (ITR)%-# approach that
uses a forward model for light propagation, the mea-
sured light intensity distribution on the boundary of
the turbid medium, and an inversion algorithm to
generate a map of the optical properties, such as the
absorption coefficient (p,) and the scattering coeffi-
cient (), of the medium and the embedded objects.
The objects are desired to appear as localized inho-
mogeneities in the spatial distribution of these opti-
cal coefficients.

The inversion problem is ill posed, and its adequate
theoretical treatment is critical to the achievement of
a unique solution.® Although three general
approaches—Radon-transform-type straight line in-
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tegrals,23 modeling of light scattering as a Markov
random process,2425 and development and inversions
of a partial differential equation (PDE) of diffusion
type—are pursued, it is the PDE-based methods that
seem more practical in consideration of the signal-to-
noise (S/N) ratio of the data and computationally
efficient methods available for solution.®-® The com-
monly used PDE is the diffusion approximation (DA)
of the radiative transfer equation (RTE). Both itera-
tive reconstruction and noniterative linearized inver-
sion approaches have been used to solve the inversion
problem, which is weakly nonlinear with limited suc-
cess. The reconstruction of images with adequate
spatial resolution and optical contrast and the deter-
mination of the location of the inhomogeneities re-
main formidable tasks. The time required for data
acquisition and image reconstruction is another im-
portant consideration.

In this article we present a simple and fast ap-
proach that employs (for test of concept) continuous-
wave transillumination measurements and a novel
algorithm based on independent component analysis
(ICA)26:27 from information theory to locate tumorlike
inhomogeneities embedded in breast-simulating tur-
bid media. ICA has been successfully applied in a
variety of other applications.27-30 We refer to this
information-theory-inspired approach as optical
tomography that uses independent component anal-
ysis, abbreviated as OPTICA. Experimental arrange-
ment for OPTICA realizes a multisource illumination
and multidetector signal-acquisition scheme that
provides a variety of spatial and angular views that
are essential for three-dimensional (3-D) object local-
ization. Multisource illumination is realized in prac-
tice by scanning the input surface (or source plane)
across the incident beam in a two-dimensional (2-D)
array of points (x, ya; 2 = 1, 2, ..., n). Correspond-
ing to illumination of the kth grid point on the source
plane, a charge-coupled device (CCD) camera records
the spatial intensity distribution, I,,(x,, v,), on the exit
surface (or detector plane). Every pixel of the CCD
camera thus acts as a detector implementing the mul-
tidetector measurement arrangement. The differ-
ence, Al,(x; vy;), between the above-mentioned
spatial intensity distribution, I,(x4, v;), and an esti-
mated background (say, an averaged intensity distri-
bution from different source scanning positions)
provides the perturbation in the spatial intensity dis-
tribution in the detector plane for illumination at the
kth grid point.

The localization algorithm is based on the premise
that each object (or inhomogeneity) within the turbid
medium alters the propagation of light through the
medium. Consequently, the spatial distribution of the
light intensity at the detector plane of the medium is
different with embedded inhomogeneities than that
without them. The influence of an object on Al (x;, v,)
involves propagation of light from the source to the
object, and from the object to the detector, and can be
described in terms of two Green’s functions (propa-
gators): The first G(r, r,) describes light propagation
from the source at r, to the object at r, and the second
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G(ry, r) describes that from the object to the detector
at r;. To correlate the perturbations in the light in-
tensity distributions, Al,(x,, v,), with the objects em-
bedded in the turbid medium, we assumed that these
objects illuminated by the incident wave are virtual
sources and that Al,(x,; y,) are taken to be some
weighted mixtures of signals arriving from these vir-
tual sources to the detector plane. ICA assumes these
virtual sources to be independent, and based on that
assumption it provides the independent components.
The number of leading independent components is
the same as the number of the embedded objects. The
effective contributions of independent components to
the light intensity distribution on the source and de-
tector planes are proportional to the projection of the
Green’s function, G(r, r,) and G(r,, r), on the source
and detector planes, respectively. The location and
characteristics of the objects are obtained from fitting
either or both of these projections to those of the
model Green’s function in the background medium.

The remainder of the article is organized as follows.
In Section 2, we present the general theoretical
framework for OPTICA and then discuss the specific
case of a turbid medium in the form of a slab. How-
ever, the approach can be adapted to any arbitrary
geometry. Scattering and absorbing objects are con-
sidered separately. Section 3 presents the experimen-
tal methods, materials, and parameters. The results
are presented in Section 4. Finally, the implications
of these results and the scope of OPTICA are dis-
cussed in Section 5.

2. Theoretical Formalism

In the linearized scheme of inversion, the perturba-
tion of the detected light intensities on the bound-
aries of the medium (the scattered wave field) due to
absorptive and scattering objects (inhomogeneities)
is given by?3-13

(bsca(rda I'S) = _J’ G(rd, P)Sua(r)CG(r, I'S)dsr

- j d*rdD(r)cV,G(r,, v)-V.G(r, r,)

(D

in the DA (Ref. 31) when illuminated by a unit point
source, where r,, r and r; are the positions of the
source, the inhomogeneity, and the detector, respec-
tively; S, = Maon; — M @and 3D = D, — D are the
differences in the absorption coefficient and the dif-
fusion coefficient, respectively, between the inho-
mogeneity and the background; ¢ is the speed of
light in the medium; and G(r, r’) is the Green’s func-
tion describing light propagation from r’ to r inside
the background turbid medium of the absorption and
diffusion coefficients p, and D, respectively. We do
not explicitly include the modulation frequency w of



the incident wave in the arguments of Eq. (1) for
clarity. The following formalism can be applied
to continuous-wave, frequency-domain, and time-
resolved measurements. The time-domain measure-
ment is first Fourier transformed over time to obtain
data over many different frequencies. Although Eq.
(1) starts with DA, it should be emphasized that the
formalism is not limited to DA, but can be used with
other models of light propagation in turbid media,
such as the cumulant approximation,2022:32 the
random-walk model,1924 and radiative transfer!?.33
when they are linearized.

The Green’s function G for a slab geometry in the
diffusion approximation is given by

G, v')=Gp, z, 2')
exp(—«kr; )

1 &
== - 2
47D k=—x rkJr r, ’ 2)

exp(—«r,")

r = [p? + (z ¥ 2’ +2kd)*]"?

for an incident amplitude-modulated wave of modu-
lation frequency w, where 2 = 0, =1, 2, ..., p =
[x —x')% + (y — y")!1?is the distance between the two
points r = (x,y,z) and v’ = (x',y’, z') projected onto
the xy plane, k = [(n, — iw/c)/D]"? chosen to have a
nonnegative real part, and the extrapolated bound-
aries of the slab are located at z = 0 and z = d
= L, + 2z, respectively, where L, is the physical
thickness of the slab and the extrapolation length z,
should be determined from the boundary condition of
the slab.34-36 Equation (2) serves as the model
Green’s function for the uniform background medium
of a slab geometry. The modulation frequency o
= 0 for continuous-wave light.

In practice, the projections of the Green’s function
on the source and detector planes are determined
from the measured perturbations in the light inten-
sity distribution through independent component
analysis. The comparison with the Green’s function
computed with Eq. (2) is then used to locate and
characterize the inhomogeneities. We develop the
formalism for absorptive and scattering inhomoge-
neities in the Subsections 2.A and 2.B, respectively.

A. Absorptive Inhomogeneity

The assumption that absorptive inhomogeneities are
localized [that is, the jth one is contained in volume V;
centered at rj(1 = j = J)| enables one to rewrite the
scattered wave field in Eq. (1) as

J
_d)sca(rda rs): 21 G(rd’ rj)qu(rj7 rs)7 (3)
j=

where g; = 3,(r;)cV; is the absorption strength of the
Jjth inhomogeneity. The scattered wave may be inter-
preted as an instantaneous linear mixture3”

x(r,) = As(r,). (4)

Here s(r,) = [q,G(ry, 1)), . . ., q,G(r,, r,)]" represents
the oJ virtual sources; i.e., the J inhomogeneities illu-
minated by the incident wave, A is the mixing matrix
given by

G(rdl’ I'l) G(I‘dl, r2) G(rd19 I'J)
G(ry, r1) Glry, ry) G(ry, r,)

= : : : , )
G(r,, r) Gr,, 15 G(r,, r,)

whose jth column (mixing vector) provides the
weight factors for the contributions from the jth
inhomogeneity to the detectors, and x(r,) =
[_cbsca(rdla rs)a s _Cbsca(rdm’ rs)]T is the observed
light intensity change. The superscript 7' denotes
transposition. The incident light source scans a total
of n positions r,,...,r, sequentially. For each
source position r,, the observation is made over m
positions ry, . . ., 1y . Each set of such measurement
is considered data at one temporal sampling point, as
used in the conventional instantaneous linear mix-
ture model.38 The multisource, multidetector data set
x(r,) thus describes signals observed in m channels
(m detectors) from J virtual sources (or JJ inhomoge-
neities) simultaneously over n discrete temporal
points (n spatial scanning points). One absorptive
inhomogeneity is represented by one virtual source
q,G(x;, ry). The virtual source q;G(r;, r,) represents
the individual inhomogeneity illuminated by the in-
cident wave and is similar to the concept of the sec-
ondary source in Huygen’s principle.?® The role of
detectors and sources can be interchanged owing to
the reciprocal property of light propagation.

The principal assumption of this formalism is that
the virtual source q;G(r;, r,) at the jth inhomogeneity
is independent of the virtual sources at other loca-
tions. Under this assumption, ICA can be used with
the observations from the light source scanned at
n >><J positions to separate out both virtual sources
s(r,) and the mixing matrix A.26.37

ICA is a statistical approach to separate indepen-
dent sources from linear instantaneous or convolu-
tive mixtures of independent signals without relying
on any specific knowledge of the sources except that
they are independent. The sources are recovered by a
minimization of a measure of dependence, such as
mutual information,26:27 between the reconstructed
sources.39:37 The recovered virtual sources and mix-
ing vectors from ICA are unique up to permutation
and scaling.30.37

The two Green’s functions of light propagating
from the source to the inhomogeneity and from the
inhomogeneity to the detector are retrieved from the
separated virtual sources s(r,) and the mixing matrix
A. The jth element s;(r,) of the virtual source array
and the jth column a; (mixing vector) of the mixing
matrix A provide the scaled projections of the Green’s
function on the source and detector planes, G(r;, r)
and G(r,, r;), respectively. We can write

1 April 2005 / Vol. 44, No. 10 / APPLIED OPTICS 1891



si(r,) = o0,G(x;, 1),

aj(rd) = BjG(rda rj)a (6)

where o; and B; are scaling constants for the jth in-
homogeneity.

Both the location and the strength of the jth object
can be computed by a simple fitting procedure by use
of Eq. (6). We adopted a least-square fitting procedure
given by

min {E loy " 'si(r) —G(x, )I* + X [B; la(ry)
rj,0,B5 Ty rd
- G(ry, rj)]z}. (7

The fitting yields the location r; of and the two scaling
constants «; and B; for the jth inhomogeneity, whose
absorption strength is then given by q; = o;f3;.

B. Scattering Inhomogeneity

For scattering inhomogeneities, under the assump-
tion that the inhomogeneities are localized in a few
regions, the same analysis can be carried out as that
for absorptive inhomogeneities. The only modifica-
tion is that up to three virtual sources may appear for
one scattering inhomogeneity corresponding to the
x, ¥, z components in the dot product V,G(r, r) -
VrG(r’ rs) = axG(rd7 r)axG(r7 rs) + ayG(rda r)ayG(r7 rs)
+ 9,G(ry, v)d,G(r, r,) in Eq. (1).
Introducing two auxiliary functions

1 &=

% exp(—kr,”)
g, )= p 3 {(Kr}; T PR SR

(rk+)3
exp(—Krk)}

(rk7)3

—(kr,” +1) (8)

1 =
g.(r, r)= D > {(2 — 2"+ 2kd)(kr," + 1)

j

PR ok

(")’
exp(—Krk)}

X (kry,” + 1) T 9)

and the scattered wave due to scattering inhomoge-
neities can be rewritten as

beealry, 1) = —J' d’r3D(r)ef[(x — x,)(x — x,)

Ty —y)]8.(r, rag.(x, 1)
+ gz(ra rd)gz(ra I'S)}. (10)

Denoting the scattering inhomogeneities as g’
= 3D(r)cV;', where c is the speed of light in the
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medium, and V] is the volume of the jth scattering
inhomogeneity, the scattered wave field can be trans-
formed to

J J
_d)sca(rd’ I's) = Elgz(rj, rd)qj,gz(rjy I‘s) + El Pdj
j= J=

X cos 0,8, (x;, To)g,'py cos 6,8, (x), T

J
+121 pqj Sinb.g (1), T4)q; g
X sin esgi(rj, rs)’ (11)

where p; = [(x; — j)2 + g — yj)Z]l/Z’ py = [,
- xj)2 + (y, — yj)2]1/ 2 and 0, and 6, are the azimuthal
angles of r; — r; and r; — 1, respectively. This scat-
tered wave can be regarded as a mixture of contribu-
tions from (3J') virtual sources:

q;'psj cos 0,8 . (x, T,
qj/psj Sin esg J.(rja rs)7 (12)

Qj,gz(rj’ I'S),

with mixing vectors

gz(rj’ r,), Pgj COS edgj_(rja r,), Paj sin edgj_(rja r,),
(13)

where 1 = j = J', respectively. There are in general
three virtual sources of specific patterns (one cen-
trosymmetric and two dumbbell shaped) associated
with one scattering inhomogeneity, whereas only one
centrosymmetric virtual source is associated with one
absorptive inhomogeneity. This difference may be
used to discriminate absorptive inhomogeneities
from scattering inhomogeneities. However, for scat-
tering inhomogeneities deep within turbid media,
only the g;'g.(x;, r,) virtual source remains significant
and the other two are much diminished. In such a
situation, other corroborative evidence, such as mul-
tiwavelength measurements, are required to deter-
mine the nature of inhomogeneities. Both the
location and the strength of the jth scattering object
are computed by fitting the retrieved virtual sources
and mixing vectors to expressions (12) and (13), re-
spectively.

No specific light propagation model is assumed in
ICA. The only assumption is that virtual sources are
mutually independent. The number of inhomogene-
ities within the medium is determined by the number
of the independent components presented in the mul-
tisource, multidetector data set. The analysis of re-
trieved independent components from ICA then
localizes and characterizes the absorptive and scat-
tering inhomogeneities inside the turbid medium in
which an appropriate model of the light propagator is
adopted. When the noise level is high or systematic
errors are present, or both, extra independent com-
ponents may appear. Only the leading independent
components need to be analyzed to detect and char-
acterize the inhomogeneities of interest, and other
components can be discarded.
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Fig. 1. Schematic diagram of specimen 1 comprising an
Intralipid-10% suspension in water with two long cylindrical ab-

sorbing objects of absorption coefficient 0.23 mm .

3. Experimental Methods and Materials

Two tissue-simulating phantoms with absorption
and scattering coefficients within the reported range
of values for healthy human breast tissue were used
in the study reported here.40

The first specimen (1), shown schematically in Fig.
1, was a 250 mm X 250 mm X 50 mm transparent
plastic container filled with Intralipid-10% suspen-
sion in water. The concentration of Intralipid-
10% was adjusted4! to provide a transport length /,
~ 1mm and an absorption coefficient p, =
0.003 mm ! at 785 nm, emulating those of human
breast tissue. Two cylindrical glass tubes (outer di-
ameter, 8 mm; inner diameter, 6.98 mm; and length,
250 mm) were filled with an Intralipid-10% suspen-
sion to provide the same scattering coefficient, but
the absorption coefficient was changed to 0.023 mm !
by the addition of absorbing ink. The two absorptive
rods are placed at (x,z) = (24,29) mm and (x, z)
= (47, 33) mm, respectively, with the axes of cylin-
drical tubes along y.

The second specimen (2), loaned to us by J. C.
Hebden of University College London and displayed
schematically in Fig. 2, was a 166-mm-long, 82-mm-
wide, and 55-mm-thick slab made of materials with a
reduced scattering coefficient w,’ ~ 0.9 mm ' (trans-
port length, /, ~ 1.1 mm) and an absorption coeffi-
cient u, ~ 0.006 mm '. The slab contained four 5-
mm-diameter, 5-mm-long cylindrical inhomogene-
ities. The center of each cylinder was located in the
plane halfway between the front and the back faces
of the slabs. The absorption coefficient of each cyl-
inder was 0.006 mm !, the same as that of the ma-
terial of the slab, but the scattering coefficients
were 4, 2, 1.5, and 1.1 times greater. The first and
the third cylinders, and the second and the fourth
cylinders, are on two horizontal lines approximately

Y
166 mm
PN -+ > A
*}6‘
8
:
z1.1 @ @ x20
z15 @ @ x40
A A
X
Z

i

Fig. 2. Schematic diagram of specimen 2 obtained from Univer-
sity College London. It is a solid rectangular block embedded with
four 5-mm-diameter and 5-mm-long scattering cylindrical objects
with their centers on the central plane. The absorption and scat-
tering characteristics of the specimens and the lateral positions of
the four cylinders are described in the text.

22 mm apart. The distance between neighboring
cylinders is 11 mm. Further details about the slab
may be obtained from an article published by Hall
et al.*2

The experimental arrangement used for imaging
of these two specimens (1 and 2) is shown schemat-
ically in Fig. 3. For cw measurements, a 200-pm
fiber delivered a beam of 784-nm light from a diode
laser (Ocean Optics R-2000) to illuminate the input
surface (or source plane) of the specimen. A cooled
CCD camera set at an acquisition time of 150 ms
recorded 2-D intensity patterns of the light trans-
mitted through the opposite side of the slab speci-
men. For time-resolved measurements, we used a
1-mm-diameter collimated beam of 784-nm, 150-fs,
1-kHz repetition rate light pulses from a Ti:sap-
phire laser and amplifier system#3 for sample illu-

X
Scanning Xv
Y

Source
plane

Detector
plane

Fig. 3. Schematic diagram of the experimental arrangement for
imaging objects embedded in a turbid medium. Inset shows the 2-D
array in the input plane that is scanned across the incident laser
beam.
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mination. An ultrafast gated intensified camera
system (UGICS), which provided a FWHM gate
width variable from 80 ps to 6 ns, recorded the 2-D
intensity patterns of the light transmitted through
the opposite side of the slab. Computer-controlled
xy translation stages scanned the specimens in an
array of points in the xy plane, as displayed in Fig. 3.
For the long cylindrical tubes in specimen 1, a line
scan of 16 points with a step size of 2.5 mm along the
x axis was enough to obtain the (x, z) locations of the
absorbing cylinders. An array of 20 X 18 points with
a step size of 2.5 mm across the lateral positions of
the four inhomogeneities in specimen 2 was
scanned to obtain their locations.

4. Results

Temporal profiles of the transmitted pulses were
measured by use of the UGICS in the scan mode with
an 80-ps gate width. The average optical properties of
the turbid medium were estimated by fitting the tem-
poral profiles to the DA of the RTE for a slab geometry.

ICA of the perturbations in the spatial intensity
distributions provided the corresponding indepen-
dent intensity distributions on the source and de-
tector planes. ICA-generated independent intensity
distributions on the source and detector planes are
shown in the first and second rows, respectively, of
Fig. 4 for the two absorbing cylinders in specimen 1.
The locations of the absorbing cylinders are ob-
tained from fitting these independent component
intensity distributions to those of the DA in a slab
[Eq. (2)]. The first cylinder is found at x = 24 mm,
29 mm away from the source plane and 21 mm away
from the detector plane. The second cylinder is found
at x = 47 mm, 33 mm away from the source plane
and 17 mm away from the detector plane. The (x, 2)
coordinates of both the cylinders agree to within
0.5 mm of their known locations. The absorption
strengths of the two rods are estimated by use of a
least-square fitting procedure [Eq. (7)]. The resolved
absorption strengths are ¢; = 0.152 mm?/ps and g,
= 0.132 mm?/ps, respectively, for the left and right
rods. The values are 88% and 76%, respectively, of
the true value of ¢ = 0.173 mm?/ps.

The independent intensity distributions at the de-
tector plane corresponding to the four scattering inho-
mogeneities in specimen 2 are displayed in Figs. 5(a)—
5(d). These independent components are then used to
obtain the projections of the inhomogeneity detector
Green’s function, G(r,, r),j = 1, 2, 3, 4, on the detec-
tor plane for the four small cylindrical scattering in-
homogeneities embedded in specimen 2. The
locations of the inhomogeneities are determined by
fitting the projections to those of the model Green’s
function. The locations of all four inhomogeneities
were obtained. Even the weakest scatterer, with a
scattering coefficient just 1.1 times the background
and hence considered to be rather unlikely to be
found,*2 was detected. Positions along the z axis
(depth) of the cylinders were found to be at 28.1, 27.9,
27.1, and 32.6 mm. Except for the last cylinder, the
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Fig. 4. Normalized independent spatial intensity distributions as
a function of the lateral position x at the input (or source) plane
(first row) and the exit (or detector) plane (second row) generated
by ICA for the two absorbing cylinders in specimen 1. The hori-
zontal profile of the intensity distributions on the source plane
(diamond) and on the detector plane (circle) are displayed in the
third row. Solid curves show the respective Green’s-function fit
used for obtaining the locations of the objects.

depth of the cylinders agree well with their known
center positions of 27.5 mm. The lateral positions are
determined to be (62, 63), (48, 33), (33, 62), and
(18, 33) mm for the four scattering cylinders (see Ta-
ble 1). The strongest and the third-strongest scatter-
ers are on the same horizontal line y ~ 62 mm,
whereas the second-strongest and the weakest scat-
terers are on the horizontal line y ~ 33 mm with a
spacing of 29 mm. The four scatterers are separated
by equal spacing, ~14 mm in the horizontal direc-
tion. The lateral positions agree well with the known
(x, ¥) coordinate values. The uncertainties in location
and separation are not greater than 3 mm except for
the weakest target.

5. Discussion

The OPTICA presented in this article introduces the
information theory technique of ICA to the problem of
optical tomographic imaging of objects in turbid me-
dia. It is shown to provide object locations accurate to
~1 mm in human-breast-like turbid media. It uses
multiple-source (realized in this case through scan-
ning of the sample in the xy plane across the incident
beam propagating in the z direction) illumination and
a multiple-detector (each pixel on the CCD may be
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Fig. 5. Independent spatial intensity distributions at the exit (or
detector) plane generated by ICA corresponding to objects with
scattering coefficients: (a) 4 times, (b) 2 times, (c) 1.5 times, and (d)
1.1 times that of the material of the slab in specimen 2. Horizontal
profiles of the intensity distributions in (a)—(d) are shown by circles
in (e)—(h), respectively, with solid curves representing the Green’s-
function fit used for extracting object locations.

viewed as a detector) data-acquisition scheme. The
resulting spatial diversity and multiple angular ob-
servations provide robust data for extracting 3-D lo-
cation information about the embedded objects
(inhomogeneities) in the medium. A salient feature of
OPTICA is that ICA provides the independent com-
ponents due to the inhomogeneities with minimal

Table 1. Comparison of Known and OPTICA-Determined Positions of
the Four Targets”

OPTICA-Estimated
Target Target Known Position Position
Number  Strength (x, v, z) (mm) (x, v, z) (mm)
1 4 (60, 60, 27.5) (62, 63, 28.1)
2 2 (47, 30, 27.5) (48, 33, 27.9)
3 1.5 (33, 60, 27.5) (33, 62, 27.1)
4 1.1 (20, 30, 27.5) (18, 33, 32.6)

“Target strength is the ratio of the scattering coefficients of the
target to that of the surrounding medium. The errors in location
are not greater than 3 mm.

processing of the data and does not have to resort to
any specific light propagation model for obtaining
this information. Specific light propagation models
are needed only in the later stage to determine the
location by curve fitting of the Green’s functions.
OPTICA is not model specific; any appropriate
model for light propagation, including the DA and
the cumulant solutions of the RTE, may be used.
OPTICA can be used with contrast agents such as
fluorescence-based optical tomography as well.

Although we used the slab geometry in the study
reported in this article, the approach does not depend
on any specific geometry. It may be used for other
geometries or even an arbitrary-shaped boundary. The
approach is fast and is expected to be amenable to
near-real-time detection and localization of objects in a
turbid medium, which is a key consideration for in vivo
medical imaging. The approach is remarkably sensi-
tive, considering that it could discern all four cylinders
in specimen 2. The approach successfully detected
even the lowest-contrast inhomogeneity of the four
that had a reduced scattering coefficient only 10%
higher than the surrounding medium and was consid-
ered improbable to be detected.42 OPTICA obtains lo-
cations of the objects by fitting either or both of the
Green’s functions G(r, r,) and G(r,, r), and is suited
for physically small inhomogeneities. Given its ca-
pability of identifying low-contrast small objects,
the approach is expected to be useful for detecting
tumors at their early stages of development, a cov-
eted goal in medical imaging.

As demonstrated with specimen 1 and specimen 2,
the approach could locate both absorptive and scat-
tering objects. When both absorptive and scattering
objects are present in the same turbid specimen, OP-
TICA can locate them, but their identification as ab-
sorbing or scattering entities becomes a more
challenging task. As discussed in connection with ex-
pressions (12) and (13), each scattering inhomogene-
ity is expected to be represented by three virtual
sources, yielding three pairs of effective intensity dis-
tributions each on the detector and source planes.
When the background scattering is not severe and
the S/N ratio is high, contributions from all three
virtual sources may be distinguished and the corre-
sponding object may be identified as a scattering en-
tity. Our simulation results support this assertion.
For highly scattering conditions with lower S/N ra-
tios, contributions from the two dumbbell-shaped vir-
tual sources may not be discerned, and corroborative
information obtained by other means, such as mea-
surements using light of different wavelengths, are
required for identification of the object as an absorp-
tive or scattering entity. Multiwavelength spectro-
scopic imaging measurements have the potential to
provide diagnostic information, such as whether a
tumor is malignant or benign.

In summary, OPTICA has the potential to emerge
as a new versatile tool for locating targets in turbid
media, particularly in diagnostic medical imaging
and underwater imaging.
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