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Random Walk of Polarized Light in Turbid Media
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We study the propagation of polarized light in turbid media as a random walk of vector photons. Both
propagation and polarization directions of light are found to isotropize, following a power law of the
number of scattering events. The characteristic length scale governing light isotropization and linear
depolarization, the isotropization length lp, is derived using the exact Mie scattering for spherical
particles. A simple relation lp=lt ’ 2:8� 2:5g is obtained for Rayleigh-Gans scatterers where lt is the
transport mean free path and g is the mean cosine of scattering angles.
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The propagation of polarized light in random media is a
difficult problem to handle in the framework of multiple-
scattering theory. The classical approach, which assumes
that phases are uncorrelated on scales larger than the
scattering mean free path ls, leads to the radiative transport
equation in which any interference effects are neglected
[1]. The remnant coherent effect of multiply scattered light
survives in the backscattering cone [2,3]. Although a
scalar-wave model for the optical field has been used
successfully in many instances, it is becoming increasingly
apparent that the vector nature of light plays an important
role in diverse phenomena such as coherent backscattering
[4,5], diffuse wave spectroscopy (DWS) [6–9], and mem-
ory effect [7,10]. Experiments and numerical simulations
reveal strikingly different behavior of light depolarization
by Rayleigh and non-Rayleigh scatterers [7,10–14]. Pre-
vious theoretical attempts have mainly focused on either
Rayleigh scattering [4,15,16] or circular depolarization by
large particles [17] in which simplifications were made
about the softness of the particle and the scattering angles
of light and restrict its application even for large scatterers.

Light scattering by particles neither very small nor large
and soft contains a much more complex structure origi-
nated from Mie resonance scattering. Light depolarization
by spherical particles with no restrictions in their size and
refractive index, the so called Mie scatterers, is hence most
challenging. The behavior of light depolarization by Mie
scatterers has been found experimentally and numerically
to be complex and sensitive to both the size and the
refractive index of the particle [12–14]. A general rule of
light depolarization by Mie scatterers is, however, hard to
infer from these observations as ‘‘a different behavior of
the depolarization of polarized light may arise due to the
pronounced effects of resonance and the interference struc-
tures’’ [14] in Mie scattering. A rigorous theoretical analy-
sis is required to answer the delicate dependence of light
depolarization on the size and refractive index of Mie
scatterers. Identifying the characteristic length scale over
which light depolarization occurs is of ultimate importance
since that length scale is a limiting factor in using polarized
light in vast applications including remote sensing, bio-
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medical imaging, and many other multidisciplinary fields
where multiply scattered light is used to probe the interior
of disordered media such as atmosphere, colloidal suspen-
sions and biological tissues [6–8,18,19].

In this Letter, we analytically treat propagation of po-
larized light in a uniform turbid medium as a random walk
of vector photons to give new insight into the underlying
physics. Contrary to a random walk of scalar photons, each
scattering of the photon is governed by the amplitude
scattering matrix of the scatterer and generally alters
both the propagation direction and the polarization. The
free path between consecutive scattering events is assumed
to be independent of the propagation direction and the
polarization of light, following the tradition of radiative
transfer. This independence enables us to study the micro-
scopic statistics of photon propagation and depolarization
in the direction space first and to analyze light depolariza-
tion in real space by mapping the number of scattering
events later.

The key finding of this Letter is the existence and the
analytical expression of the characteristic length scale, the
isotropization length lp, governing light isotropization and
linear depolarization when propagating in a scattering
medium. Light tends to lose its memory of the initial
propagation direction during propagation over one trans-
port mean free path lt. We find light gradually becomes
isotropic (both the propagation direction becomes isotropic
and the intensity equalizes in all polarization directions) in
the direction space during propagation in a scattering
medium composed of spherical or randomly oriented non-
spheric scatterers, characterized by the isotropization
length lp. The isotropization length is longer than lt. The
complex dependence of lp on the size and refractive index
of the scatterer for spherical particles reveals the pro-
nounced effects of Mie resonance and interference struc-
tures. In addition, a simple relation lp=lt ’ 2:8� 2:5g is
obtained for small particles of modest relative refractive
index with g & 0:72 where lt is the transport mean free
path and g is the mean cosine of scattering angles, extend-
ing the well-known result for Rayleigh scattering to the
Rayleigh-Gans scattering regime.
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We describe light scattering in a local orthonormal
coordinate system �p;q; s� where p and q are the unit
vectors along the parallel and perpendicular electric field
with respect to the scattering plane of the previous scatter-
ing and s is the photon’s propagation direction prior to the
current scattering. Light scattering by the particle can be
described by a rotation of the local coordinate system
�p0;q0; s0�T � A�p;q; s�T and an update of the parallel
and perpendicular electric field components �E01; E

0
2�
T �

B�E1; E2�
T where the superscript ‘‘T’’ denotes transpose

[20]. The matrices A and B are given by:

A �
� cos� � sin� ��
� sin� cos� 0
� cos� � sin� �

0
@

1
A (1)

and

B � ��1=2 S2 cos� S2 sin�
�S1 sin� S1 cos�

� �
; (2)

where � � cos� and � � sin�, � and � are the scattering
and azimuthal angles, respectively, and S2;1 are the nonzero
elements of the amplitude scattering matrix of the spherical
or randomly oriented nonspheric scatterers [21]. A scaling
constant � � 1

4

R
�jS2j

2 � jS1j
2�d� has been introduced

such that the energy of light is conserved (jE01j
2 � jE02j

2 �
jE1j

2 � jE2j
2) in scattering on average. Any arbitrary scal-

ing constant can be used here as it does not change either
the polarization property of light or the phase function of
scattering. Free flight of light in space can also be sup-
pressed in light multiple scattering in the direction space as
it does not change the polarization. The matrix A is or-
thogonal. The exact Mie scattering phase function is real-
ized by weighting light scattering into different directions
with the matrix B given a uniformly distributed scattering
and azimuthal angles over the entire solid angle.

To analyze the second order statistics about light polar-
ization and propagation directions in the direction space,
we introduce F � �E1p; E1q; E1s; E2p; E2q; E2s�T and
consider

F �n� � C�n�F�n�1� (3)

in the nth scattering where the superscript ‘‘�n�’’ denotes
the quantities after the nth scattering and C�n� is the direct
product

C�n� � B � A �
B11A B12A
B21A B22A

� �
; (4)

with ��;�� the scattering and azimuthal angles in the nth
scattering. After light is scattered n times, the electric field
is given by E�n� � F�n�1 � F�n�5 and the propagation direc-
tion is specified by F�n�3 and F�n�6 .

Equation (3) can be regarded as the ‘‘equation of mo-
tion’’ of light in the direction space. To proceed, we use a
transfer matrix technique [4,22] and write F�n� �
M�n�F�0� �

Qn
i�1 C

�i�F�0� with

M�n� � C�n�M�n�1�; M�0� � I; (5)
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where I is the unit matrix. The motion of polarized light in
the direction space is embodied in the transfer matrix M�n�.

We start by considering an incident light of unit intensity
polarized along the x axis and propagating in the positive z
axis, i.e., F�0� � �x̂; ŷ; ẑ; 0; 0; 0�T . The electric field after n
scattering events is given by E�n� � �M�n�11 �M

�n�
51 �x̂�

�M�n�12 �M
�n�
52 �ŷ� �M

�n�
13 �M

�n�
53 �ẑ. Consider its x compo-

nent E�n�x . Denote ��n�j � M�n�j1 �M
�n�
j1 �
� for j � 1; 2; . . . ; 6,

��n�7 �M
�n�
11 �M

�n�
51 �
��M�n�51 �M

�n�
11 �
�, and ��n�8 �M

�n�
21 �M

�n�
41 �
��

M�n�41 �M
�n�
21 �
�. We find

h��n�i � G��n�1�; (6)

where G is an 8	 8 transfer matrix and hi denotes the
ensemble average on the scattering and azimuthal angles
over the whole solid angle (the average of terms involving
odd powers of sin� or cos� vanishes). Only the averaging
over the scattering angles at the nth scattering event is
performed in Eq. (6). Because of the specific structure of
C�n� reflecting underlying symmetry, 4 out of 8 eigenvalues
of G are zero. The nonzero eigenvalues are 1, d, and �
 �
3
4�

d
4�

7
16 �a� b� 


1
16 � where a � 1

2�

R
jS2j

2�2d�,

b � 1
2�

R
jS1j

2�2d�, d � 1
2�

R
<�S�1S2��d�, and � ������������������������������������������������������������������������������

�5�a� b� � 4�1� d��2 � 24�a� b�2
p

, dependent solely
on the scattering matrix of the particle. The iteration
equation (6) is solved using the similarity transformation
of G and the autocorrelation hjE�n�x j2i � h�

�n�
1 � �

�n�
5 �

��n�7 i is obtained.
Other autocorrelations hjE�n�y;zj2i and h�s�n�x;y;z�2i can be

treated similarly and they are governed by the same trans-
fer matrix G. We find

hjE�n�� j2i �
1

3
� f�� �n� � f

�
� �n�; (7)

where f
1 �
1
3

1
3� �2a� 7b� 2d� 2�, f
2 �

� 1
6

1
6� �13a� 7b� 8d� 8�, and f
3 � �

1
6


1
6� 	

�17a� 7b� 4d� 4�. The autocorrelation of s�n� should
be weighted by light intensity jE�n�1 j

2 � jE�n�2 j
2 in the aver-

age over the whole solid angle. We find

hjs�n�� j2i �
1

3
� h���n� � h

�
��n�; (8)

where h
1 � �
1
6


1
6� �11a� b� 4d� 4�, h
2 �

� 1
6

1
6� �a� 11b� 4d� 4�, and h
3 �

1
3

1
3� 	

�5a� 5b� 4d� 4�. The coefficients f
� and h
� satisfyP
�f


� �

P
�h


� � 0. All cross correlations hE�n�� �E

�n�
	 �
�i

and hs�n�� s
�n�
	 i when � � 	 vanish due to the structure (4)

of C [23].
If the incident light of unit intensity is in a general

(elliptic) polarization state, E�0�1 x̂� E
�0�
2 ŷ, where x̂ and ŷ

are the principal axes of the polarization ellipse and
jE�0�1 j

2 � jE�0�2 j
2 � 1, Eqs. (7) and (8) still hold with the

only adjustment of coefficients f
� and h
� for � � 1; 2 to
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jE�0�1 j
2f
� � jE

�0�
2 j

2f
3�� and jE�0�1 j
2h
� � jE

�0�
2 j

2h
3��, re-
spectively. hjE�n�z j2i and h�s�n�z �2i do not change with the
state of polarization of the incident light.

The values of the two eigenvalues �
 as a function of the
size parameter x of the particle are displayed in Fig. 1. It
should be noted that �� � 0:7 and �� � 0 when x! 0,
incorporating Rayleigh scattering [24] as a special case.
When the particle departs from Rayleigh scattering, the
eigenvalues �
 initially increase rapidly and then oscil-
lates with x due to Mie resonance scattering.

Noting that 0 � �� < �� < 1, Eqs. (7) and (8) describe
the following picture of polarized light isotropization in
turbid media. The light propagation direction gradually
becomes isotropic and light intensity equalizes in all po-
larization directions with increase of the number n of
scattering events, i.e., hjE�n�� j2i ! 1

3 and hjs�n�� j2i ! 1
3 . The

decay of both light polarization and directionality anisot-
ropies follows a power law of the larger eigenvalue �n� �
�l=ls� � e�l=lp when n� 1= ln���� where l is the path length
of light, ls is the scattering mean free path, and the iso-
tropization length lp � ls= ln 1

��
specifies the characteristic

length of light becoming isotropic in its polarization and
propagation directions. The same length scale lp is respon-
sible for both isotropization of light propagation and po-
larization directions and light linear depolarization. The
depolarization observed in multiple scattering is the result
of summation of the polarizations of rays propagating
along different random paths. Light linear depolarization
occurs simultaneously with the isotropization of the beam
of light.

For an incident light polarized along the x axis and
propagating in the positive z axis, the fraction of co- and
cross-polarized light is given by
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FIG. 1. The eigenvalues �
 versus the size parameter of Mie
scatterers for various relative refractive index m. Size parameter
is defined as 2
a=� where a is the radius of the particle and � is
the wavelength of light in the background medium.
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C�n�1�
k;? �

1
3� f

�
1;2�

n
� � f

�
1;2�

n
�

2
3� f

�
3 �

n
� � f

�
3 �

n
�

’
1
3� f

�
1;2e

�l=lp

2
3� f

�
3 e
�l=lp

(9)

after �n� 1� scattering, where light is scattered to the z
direction at the last scattering [25]. The second equality
holds when n� 1= ln���� . lp is seen to also characterize
depolarization of incident linearly polarized light.
Equation (9) reduces to the known result in [24] for
Rayleigh scatterers whose lp � ls= ln10

7 � 2:8ls.
It is most instructive to contrast lp with the transport

mean free path lt. lp is the length scale at which light gets
isotropized, while lt is the distance over which the initial
propagation direction of light gets forgotten and equals to
ls=�1� g�. The ratio lp=lt for Mie scatterers of various
refractive indices and size parameters are displayed in
Fig. 2. The complex oscillation structure in lp=lt originates
from Mie resonance scattering.

Some observations can be made from Fig. 2. It shows
lp > lt as it is more difficult to achieve isotropization of
propagation directions of light (hs2

x;y;zi tends to 1=3) than to
lose the memory of the initial propagation direction of light
(hsi tends to 0). Linearly polarized light is found to be, in
general, harder to depolarize by smaller particles (lp �
2:8lt) than by larger particles (lp � lt � 1:5lt) when light
travels the same distance measured in lt. But this rule is no
longer true for particles of higher refractive indices [see
Fig. 2(b)]. The ratio lp=lt is multiple valued for g� 1 as
larger particles of different sizes may have the same g yet
different lp.

Surprisingly, for particles of a modest relative refractive
index (m< 1:3), the inset in Fig. 2(a) demonstrates a
simple linear relation between lp=lt and g, given by

lp=lt ’ 1:8�1� g=g0� � 1 ’ 2:8� 2:5g (10)

for particles of g � g0 � 0:72
 0:02, where g0 takes a
slightly smaller value for larger m. Equation (10) agrees
well with an empirical expression lp=lt � 2:82� 2:37g
obtained from fitting DWS measurements and
Monte Carlo simulations in Fig. (4a) of [8]. This relation
(10) can be attributed to Rayleigh-Gans scattering of such
particles [21] and extends the known result for Rayleigh
scattering to a much larger regime.

We note the work reported here considers uncorrelated
scatterers. The correlation effect in a strongly correlated
colloidal suspension of small particles can be taken into
account in the first order by introduction of a structure
factor [26] and scaling the scattering matrix accordingly.
The analysis shows Eq. (10) approximately holds in that
regime for small particles. Correlation between scatterers
increases the ratio lp=lt and may result in an abnormally
slow linear depolarization of light. The backscattering
cone [4,22] can be similarly treated using the model pre-
sented in this Letter.

In conclusion, we have presented a random walk model
of vector photons to describe multiple scattering and de-
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FIG. 2. The ratio of the characteristic length lp of light becom-
ing isotropic in its polarization and propagation directions over
the transport mean free path lt versus (a) size parameter x and
(b) relative refractive index m. The inset in (a) shows lp=lt ’
2:8� 2:5g for particles with modest refractive index and average
cosine g � g0 � 0:72.
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polarization of polarized light in turbid media. The iso-
tropization of the polarization and propagation directions
of polarized light has been shown to occur simultaneously
and is governed by the same isotropization length. The
isotropization length for Mie scatterers has been derived
analytically, revealing the complex dependence of light
isotropization on particle size and refractive index due to
Mie resonance and interference structures. This work
should facilitate quantitative understanding of isotropiza-
tion and depolarization of multiply scattered light by Mie
particles and randomly oriented nonspherical scatterers..
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