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Superposition rule for light scattering by a
composite particle
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A superposition rule for light scattering by composite particles is presented that expresses the scattering
amplitude of a composite particle as a superposition of that of the host particle and those of the shadowed
inclusions. The superposition rule is derived for a soft composite particle but also provides insight into light
scattering by a general composite scatterer. Favorable comparison with an exact numerical method demon-
strates the usefulness of the rule in analyzing light scattering by composite particles such as biological cells.
© 2006 Optical Society of America
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Light interaction with small particles is the founda-
tion for remote sensing and biomedical optical spec-
troscopy and imaging. Mie theory1 is widely used for
spherical uniform particles. For nonspherical par-
ticles or composite particles, there is no analytical ex-
act solution available, and numerical methods are
commonly required.2 Light scattering from composite
particles such as aerosol particles3 and cells,4 which
contain internal structures, is of particular interest
in atmospheric science and biomedical applications.
For example, the change of the nuclear structure in a
cell during neoplastic progression may be probed
optically.5 Computation of light scattering by a com-
posite particle with inclusions is much more difficult
than that for a uniform particle.2,4,6,7 The effect of the
presence of inclusions on the light scattering prop-
erty is hard to quantify. In this Letter, a superposi-
tion rule for light scattering by composite particles is
presented. The superposition rule shows that light
scattering by a composite particle can be constructed
from a superposition of light scattering by the host
particle and those by the shadowed inclusions. This
rule applies to composite particles that are optically
soft (relative refractive index �m−1��1) when the
shadowing of the host particle on inclusions is not far
from uniformity. However, it also yields valuable
insight into light scattering by a general composite
particle.

Light scattering by a soft particle can be well de-
scribed by the anomalous diffraction theory (ADT) of
van de Hulst.1,8,9 The applicability of ADT extends to
nonsoft particles.10,11 The scattering amplitude func-
tion in ADT is given by

S�q� =
k2

2�
� �1 − exp�− ip��,����e−i��q�+�q��d�d�,

�1�

where the integration of � and � is over the area of
the projection of the particle in the direction (z axis)
of the incident light, p�� ,��=k	dz�m�� ,� ,z�−1� is the
phase delay of the ray piercing the particle at the po-
sition �� ,��, q= �q� ,q� ,0�=q�cos � ,sin � ,0� is the

wave-vector transfer with a magnitude 2k sin�� /2�, k
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is the wavenumber, and �, � are the polar and azi-
muthal angles of scattering, respectively. For a com-
posite particle of the refractive index m0 containing a
region (nucleus) of refractive index m1=m0+�m, the
phase delay p can be written as the sum of two parts:
the phase delay in the host particle p0
=k	dz�m0�� ,� ,z�−1� and the additional phase delay
due to the nucleus �p�� ,��=k	dz�m�� ,� ,z� [see Fig.
1(a)]. As a consequence, the scattering amplitude
function can be written as

S�q� = S0�q� + exp�− irc · q�fcSn�q�, �2�

where S0 and Sn are the scattering amplitude func-
tions for the host particle of refractive index m0 and
the shadowed nucleus of refractive index �m+1, re-
spectively, rc= ��c ,�c ,zc� is the position of the center
of the nucleus relative to the center of the host par-
ticle, fc is an operator, and fcSn��� is defined by

fcSn�q� =
k2

2�
� fc���,����1 − exp�− i�p���,�����

�e−i���q�+��q��d��d��, �3�

with fc��� ,���=exp�−ip0���+�c ,��+�c��.
The essence of ADT is that light penetrates

straight through the scatterer with only a minimal
bending of the ray. Hence light scattering by a com-
posite particle is equivalent to that by two individual
entities (the host particle and the nucleus), where the
nucleus outside is shadowed by the host particle [see
Fig. 1(b)]. If the maximum difference �	
�max in the
phase delay p0���+�c ,��+�c� of the illuminating light
on the nucleus due to the host particle is small, then
we can replace fc in Eq. (3) by a constant exp�−i
̄�,
where 
̄ is the average phase delay caused by the
host particle. If �	
�max�1, different regions of the
shadowed nucleus are illuminated by light in phase
and out of phase alternatively. Since light scattering
from volumes of the nucleus illuminated by light out
of phase tends to cancel each other, light scattering
by the shadowed nucleus is then much suppressed
and quite different from that found when it is stand-

alone.
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Based on the above observation, the superposition
rule asserts that the light scattering amplitude for a
composite particle can be expressed as a superposi-
tion of those of the host particle and the shadowed
nucleus:

S�q� = S0�q� + exp�− irc · q − i
̄�Sn�q�, �4�

where 
̄ is the average phase delay seen by the
nucleus due to the host particle as long as �	
�max
�1. The shadowed nucleus is the same as the real
nucleus except that its relative refractive index is re-
placed by m1−m0+1. If the host particle contains
multiple inclusions, Eq. (4) becomes

S�q� = S0�q� + 

j

exp�− ircj
· q − i
̄j�Sj�q�, �5�

where 
̄j is the average phase delay seen by the jth
inclusion centered at rcj

due to the host particle (and
possibly other inclusions), and Sj is the scattering
amplitude function for the jth shadowed inclusion
(with a modified refractive index) provided �	
�max
�1 is satisfied by each inclusion. The superposition
rule extends to the scattering amplitude matrix1 in
which S in Eqs. (4) and (5) is a 2�2 matrix. After ob-
taining the scattering amplitude of a composite par-
ticle, its scattering properties such as optical efficien-
cies, phase function, and Muller matrix will be fully
determined.1

The application of this rule for a concentric sphere
will be demonstrated. Denote the radius of the host
particle a and the radius of the nucleus b. The aver-
age phase delay is 
̄= 2

3
max−2�1− �1−2�3/2�, and the
maximum phase delay difference is �	
�max= 1

2
max2,
where 
max=2k�m0−1�a and =b /a. The superposi-
tion rule can be applied when 1

2
max2�1.
Figure 2 displays the light extinction efficiencies

for various concentric spheres computed exactly12

and approximately by using the superposition rule,
where the scattering amplitudes S0 and Sn in Eq. (4)
are computed by using the MIEV code.13 Light extinc-
tion spectra for two concentric spheres of size a
=8 �m ��	
�max=0.7�, and a=32 �m ��	
�max=2.7�
are shown for the wavelength 500–1000 nm in
vacuum. Even when �	
�max��, the superposition
rule still gives an acceptable approximation to light
extinction by a composite scatterer.

Figure 3 displays the intensity of light scattering

Fig. 1. (a) Composite scatterer illuminated by an inciden
outside nucleus shadowed by the host particle. The shadow
into different directions (unnormalized phase func-
tion) computed exactly and approximately by using
the superposition rule for various concentric spheres.
The agreement between the spectra obtained by the
superposition rule and the exact ones is excellent.

Light scattering by a composite scatterer with an
eccentric inclusion may depend on both the polar and
azimuthal angles of scattering. The superposition
rule reproduces the phenomenon7 that a lower refrac-
tive index inclusion causes a secondary diffraction
ring to appear on its opposite side. The superposition
rule can also be used to compute light scattering by a
composite particle with a randomly placed inclusion
in a straightforward fashion. One example of practi-
cal importance is a spherical scatterer with a nucleus
randomly placed inside emulating a biological cell.
The scattering amplitude function of the composite
scatterer can be expressed as

S�q� = S0�q� + f�q,rc�Sn�q�, �6�

where f�q ,rc�=exp�−irc ·q− i
max�1− ��c
2+�c

2� /a2� and

max=2k�m0−1�a when the nucleus is located at rc.
The average phase delay 
̄ has been replaced by the
phase delay for the ray passing through the center of
the nucleus for simplicity. The scattering amplitude
S̄�q� of the composite sphere with a randomly placed
inclusion is obtained by performing a configurational

am along the z axis. (b) Equivalent configuration with an
ucleus has a modified refractive index.

Fig. 2. (Color online) Extinction efficiencies for various
concentric spheres of radius (a) a=8 �m and (b) a=32 �m.
The ratio of the size of the nucleus over that of the host par-
ticle is =0.5. The relative refractive indices are m0=1.02
for the host particle and m1=1.08 for the nucleus. The re-
fractive index of the environment is assumed to be 1.33.
The values obtained by using the superposition rule agree
well with the exact ones. The extinction efficiencies for the
host particle alone are also plotted for comparison.
t be
ed n
average of f�q ,rc� in Eq. (6) over rc, which yields
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f�q� = 3�
0

�/2

exp�− i
max�1 − �2 cos2 ��

�J0�qa� cos ��cos � sin2 �d�, �7�

dependent on �a, the maximum displacement of the
nucleus from the center of the host. The behavior of
S̄�q� departs from that of a concentric sphere when
��0. It is noted that the phase function of such a
composite particle is determined by �S�q��2= �S0�q��2

+ �Sn�q��2+2R�f�q�S0
*�q�Sn�q��� �S̄�q��2, where R and

* denote the real part and the complex conjugate, re-
spectively.

The superposition rule provides a simple means to
analyze light scattering by a soft complex particle
and to quantify the contributions from each indi-
vidual inclusion. It is, in particular, suited to investi-
gate light scattering by a biological cell and its inter-
nal structure (nucleus, mitochondria, and other
organelles). Since the scattering amplitude fully de-
termines the (vector) light scattering properties by a
scatterer, it is believed the superposition rule about
the scattering amplitude will be important to under-
stand light scattering by a composite particle and fa-
cilitate noninvasive probing of such particles using
light.

The author’s e-mail address is
mxu@mail.fairfield.edu.

Fig. 3. (Color online) Angular light scattering by various co
wavelength of the incident light is 500 nm. The angular sp
the exact ones. The angular spectra for the host particle al
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